亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study best arm identification in a federated multi-armed bandit setting with a central server and multiple clients, when each client has access to a {\em subset} of arms and each arm yields independent Gaussian observations. The goal is to identify the best arm of each client subject to an upper bound on the error probability; here, the best arm is one that has the largest {\em average} value of the means averaged across all clients having access to the arm. Our interest is in the asymptotics as the error probability vanishes. We provide an asymptotic lower bound on the growth rate of the expected stopping time of any algorithm. Furthermore, we show that for any algorithm whose upper bound on the expected stopping time matches with the lower bound up to a multiplicative constant ({\em almost-optimal} algorithm), the ratio of any two consecutive communication time instants must be {\em bounded}, a result that is of independent interest. We thereby infer that an algorithm can communicate no more sparsely than at exponential time instants in order to be almost-optimal. For the class of almost-optimal algorithms, we present the first-of-its-kind asymptotic lower bound on the expected number of {\em communication rounds} until stoppage. We propose a novel algorithm that communicates at exponential time instants, and demonstrate that it is asymptotically almost-optimal.

相關內容

 安謀控股公司,又稱ARM公司,跨國性半導體設計與軟件公司,總部位于英國英格蘭劍橋。主要的產品是ARM架構處理器的設計,將其以知識產權的形式向客戶進行授權,同時也提供軟件開發工具。

Several works related to spatial crowdsourcing have been proposed in the direction where the task executers are to perform the tasks within the stipulated deadlines. Though the deadlines are set, it may be a practical scenario that majority of the task executers submit the tasks as late as possible. This situation where the task executers may delay their task submission is termed as procrastination in behavioural economics. In many applications, these late submission of tasks may be problematic for task providers. So here, the participating agents (both task providers and task executers) are articulated with the procrastination issue. In literature, how to prevent this procrastination within the deadline is not addressed in spatial crowdsourcing scenario. However, in a bipartite graph setting one procrastination aware scheduling is proposed but balanced job (task and job will synonymously be used) distribution in different slots (also termed as schedules) is not considered there. In this paper, a procrastination aware scheduling of jobs is proliferated by proposing an (randomized) algorithm in spatial crowdsourcing scenario. Our algorithm ensures that balancing of jobs in different schedules are maintained. Our scheme is compared with the existing algorithm through extensive simulation and in terms of balancing effect, our proposed algorithm outperforms the existing one. Analytically it is shown that our proposed algorithm maintains the balanced distribution.

As IoT networks become more complex and generate massive amounts of dynamic data, it is difficult to monitor and detect anomalies using traditional statistical methods and machine learning methods. Deep learning algorithms can process and learn from large amounts of data and can also be trained using unsupervised learning techniques, meaning they don't require labelled data to detect anomalies. This makes it possible to detect new and unknown anomalies that may not have been detected before. Also, deep learning algorithms can be automated and highly scalable; thereby, they can run continuously in the backend and make it achievable to monitor large IoT networks instantly. In this work, we conduct a literature review on the most recent works using deep learning techniques and implement a model using ensemble techniques on the KDD Cup 99 dataset. The experimental results showcase the impressive performance of our deep anomaly detection model, achieving an accuracy of over 98\%.

Recommender systems have made significant strides in various industries, primarily driven by extensive efforts to enhance recommendation accuracy. However, this pursuit of accuracy has inadvertently given rise to echo chamber/filter bubble effects. Especially in industry, it could impair user's experiences and prevent user from accessing a wider range of items. One of the solutions is to take diversity into account. However, most of existing works focus on user's explicit preferences, while rarely exploring user's non-interaction preferences. These neglected non-interaction preferences are especially important for broadening user's interests in alleviating echo chamber/filter bubble effects.Therefore, in this paper, we first define diversity as two distinct definitions, i.e., user-explicit diversity (U-diversity) and user-item non-interaction diversity (N-diversity) based on user historical behaviors. Then, we propose a succinct and effective method, named as Controllable Category Diversity Framework (CCDF) to achieve both high U-diversity and N-diversity simultaneously.Specifically, CCDF consists of two stages, User-Category Matching and Constrained Item Matching. The User-Category Matching utilizes the DeepU2C model and a combined loss to capture user's preferences in categories, and then selects the top-$K$ categories with a controllable parameter $K$.These top-$K$ categories will be used as trigger information in Constrained Item Matching. Offline experimental results show that our proposed DeepU2C outperforms state-of-the-art diversity-oriented methods, especially on N-diversity task. The whole framework is validated in a real-world production environment by conducting online A/B testing.

We study incremental constituent parsers to assess their capacity to output trees based on prefix representations alone. Guided by strictly left-to-right generative language models and tree-decoding modules, we build parsers that adhere to a strong definition of incrementality across languages. This builds upon work that asserted incrementality, but that mostly only enforced it on either the encoder or the decoder. Finally, we conduct an analysis against non-incremental and partially incremental models.

This work establishes new convergence guarantees for gradient descent in smooth convex optimization via a computer-assisted analysis technique. Our theory allows nonconstant stepsize policies with frequent long steps potentially violating descent by analyzing the overall effect of many iterations at once rather than the typical one-iteration inductions used in most first-order method analyses. We show that long steps, which may increase the objective value in the short term, lead to provably faster convergence in the long term. A conjecture towards proving a faster $O(1/T\log T)$ rate for gradient descent is also motivated along with simple numerical validation.

High-resolution event data on armed conflict and related processes have revolutionized the study of political contention with datasets like UCDP GED, ACLED etc. However, most of these datasets limit themselves to collecting spatio-temporal (high-resolution) and intensity data. Information on dynamics, such as targets, tactics, purposes etc. are rarely collected owing to the extreme workload of collecting data. However, most datasets rely on a rich corpus of textual data allowing further mining of further information connected to each event. This paper proposes one such approach that is inexpensive and high performance, leveraging active learning - an iterative process of improving a machine learning model based on sequential (guided) human input. Active learning is employed to then step-wise train (fine-tuning) of a large, encoder-only language model adapted for extracting sub-classes of events relating to conflict dynamics. The approach shows performance similar to human (gold-standard) coding while reducing the amount of required human annotation by as much as 99%.

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司