High-resolution event data on armed conflict and related processes have revolutionized the study of political contention with datasets like UCDP GED, ACLED etc. However, most of these datasets limit themselves to collecting spatio-temporal (high-resolution) and intensity data. Information on dynamics, such as targets, tactics, purposes etc. are rarely collected owing to the extreme workload of collecting data. However, most datasets rely on a rich corpus of textual data allowing further mining of further information connected to each event. This paper proposes one such approach that is inexpensive and high performance, leveraging active learning - an iterative process of improving a machine learning model based on sequential (guided) human input. Active learning is employed to then step-wise train (fine-tuning) of a large, encoder-only language model adapted for extracting sub-classes of events relating to conflict dynamics. The approach shows performance similar to human (gold-standard) coding while reducing the amount of required human annotation by as much as 99%.
The problem of distributed optimization requires a group of networked agents to compute a parameter that minimizes the average of their local cost functions. While there are a variety of distributed optimization algorithms that can solve this problem, they are typically vulnerable to "Byzantine" agents that do not follow the algorithm. Recent attempts to address this issue focus on single dimensional functions, or assume certain statistical properties of the functions at the agents. In this paper, we provide two resilient, scalable, distributed optimization algorithms for multi-dimensional functions. Our schemes involve two filters, (1) a distance-based filter and (2) a min-max filter, which each remove neighborhood states that are extreme (defined precisely in our algorithms) at each iteration. We show that these algorithms can mitigate the impact of up to $F$ (unknown) Byzantine agents in the neighborhood of each regular agent. In particular, we show that if the network topology satisfies certain conditions, all of the regular agents' states are guaranteed to converge to a bounded region that contains the minimizer of the average of the regular agents' functions.
Many new methodologies for the control of large-scale multi-agent systems are based on macroscopic representations of the emerging systemdynamics, in the form of continuum approximations of large ensembles. These techniques, that are typically developed in the limit case of an infinite number of agents, are usually validated only through numerical simulations. In this paper, we introduce a mixed reality set-up for testing swarm robotics techniques, focusing on the macroscopic collective motion of robotic swarms. This hybrid apparatus combines both real differential drive robots and virtual agents to create a heterogeneous swarm of tunable size. We also extend continuification-based control methods for swarms to higher dimensions, and assess experimentally their validity in the new platform. Our study demonstrates the effectiveness of the platform for conducting large-scale swarm robotics experiments, and it contributes new theoretical insights into control algorithms exploiting continuification approaches.
With the rapid increase of observational, experimental and simulated data for stochastic systems, tremendous efforts have been devoted to identifying governing laws underlying the evolution of these systems. Despite the broad applications of non-Gaussian fluctuations in numerous physical phenomena, the data-driven approaches to extracting stochastic dynamics with L\'{e}vy noise are relatively few. In this work, we propose a Weak Collocation Regression (WCR) to explicitly reveal unknown stochastic dynamical systems, i.e., the Stochastic Differential Equation (SDE) with both $\alpha$-stable L\'{e}vy noise and Gaussian noise, from discrete aggregate data. This method utilizes the evolution equation of the probability distribution function, i.e., the Fokker-Planck (FP) equation. With the weak form of the FP equation, the WCR constructs a linear system of unknown parameters where all integrals are evaluated by Monte Carlo method with the observations. Then, the unknown parameters are obtained by a sparse linear regression. For a SDE with L\'{e}vy noise, the corresponding FP equation is a partial integro-differential equation (PIDE), which contains nonlocal terms, and is difficult to deal with. The weak form can avoid complicated multiple integrals. Our approach can simultaneously distinguish mixed noise types, even in multi-dimensional problems. Numerical experiments demonstrate that our method is accurate and computationally efficient.
Sparse neural networks have shown similar or better generalization performance than their dense counterparts while having higher parameter efficiency. This has motivated a number of works to learn, induce, or search for high performing sparse networks. While reports of quality or efficiency gains are impressive, standard baselines are lacking, therefore hindering having reliable comparability and reproducibility across methods. In this work, we provide an evaluation approach and a naive Random Search baseline method for finding good sparse configurations. We apply Random Search on the node space of an overparameterized network with the goal of finding better initialized sparse sub-networks that are positioned more advantageously in the loss landscape. We record sparse network post-training performances at various levels of sparsity and compare against both their fully connected parent networks and random sparse configurations at the same sparsity levels. We observe that for this architecture search task, initialized sparse networks found by Random Search neither perform better nor converge more efficiently than their random counterparts. Thus we conclude that Random Search may be viewed as a suitable neutral baseline for sparsity search methods.
Reliable autonomous navigation requires adapting the control policy of a mobile robot in response to dynamics changes in different operational conditions. Hand-designed dynamics models may struggle to capture model variations due to a limited set of parameters. Data-driven dynamics learning approaches offer higher model capacity and better generalization but require large amounts of state-labeled data. This paper develops an approach for learning robot dynamics directly from point-cloud observations, removing the need and associated errors of state estimation, while embedding Hamiltonian structure in the dynamics model to improve data efficiency. We design an observation-space loss that relates motion prediction from the dynamics model with motion prediction from point-cloud registration to train a Hamiltonian neural ordinary differential equation. The learned Hamiltonian model enables the design of an energy-shaping model-based tracking controller for rigid-body robots. We demonstrate dynamics learning and tracking control on a real nonholonomic wheeled robot.
Analysis of non-typical emotions, such as stress, depression and engagement is less common and more complex compared to that of frequently discussed emotions like happiness, sadness, fear, and anger. The importance of these non-typical emotions has been increasingly recognized due to their implications on mental health and well-being. Stress and depression impact the engagement in daily tasks, highlighting the need to understand their interplay. This survey is the first to simultaneously explore computational methods for analyzing stress, depression, and engagement. We discuss the most commonly used datasets, input modalities, data processing techniques, and information fusion methods used for the computational analysis of stress, depression and engagement. A timeline and taxonomy of non-typical emotion analysis approaches along with their generic pipeline and categories are presented. Subsequently, we describe state-of-the-art computational approaches for non-typical emotion analysis, including a performance summary on the most commonly used datasets. Following this, we explore the applications, along with the associated challenges, limitations, and future research directions.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.