Sonification research is intrinsically interdisciplinary. Consequently, a proper documentation of, and interdisciplinary discourse about a sonification is often hindered by terminology discrepancies between involved disciplines, i.e., the lack of a common sound terminology in sonification research. Without a common ground, a researcher from one discipline may have troubles understanding the implementation and imagining the resulting sound perception of a sonification, if the sonification is described by a researcher from another discipline. To find a common ground, I consulted literature on interdisciplinary research and discourse, identified problems that occur in sonification, and applied the recommended solutions. As a result, I recommend considering three aspects of sonification individually, namely 1.) Sound Design Concept, 2.) Objective and 3.) Method, clarifying which discipline is involved in which aspect, and sticking to this discipline's terminology. As two requirements of sonifications are that they are a) reproducible and b) interpretable, I recommend documenting and discussing every sonification design once using audio engineering terminology, and once using psychoacoustic terminology. The appendix provides comprehensive lists of sound terms from both disciplines, together with relevant literature and a clarification of often misunderstood and misused terms.
The identifiability problem arises naturally in a number of contexts in mathematics and computer science. Specific instances include local or global rigidity of graphs and unique completability of partially-filled tensors subject to rank conditions. The identifiability of points on secant varieties has also been a topic of much research in algebraic geometry. It is often formulated as the problem of identifying a set of points satisfying a given set of algebraic relations. A key question then is to prove sufficient conditions for relations to guarantee the identifiability of the points. This paper proposes a new general framework for capturing the identifiability problem when a set of algebraic relations has a combinatorial structure and develops tools to analyse the impact of the underlying combinatorics on the local or global identifiability of points. Our framework is built on the language of graph rigidity, where the measurements are Euclidean distances between two points, but applicable in the generality of hypergraphs with arbitrary algebraic measurements. We establish necessary and sufficient (hyper)graph theoretical conditions for identifiability by exploiting techniques from graph rigidity theory and algebraic geometry of secant varieties. In particular our work analyses combinatorially the effect of non-generic projections of secant varieties.
Memory bandwidth is known to be a performance bottleneck for FPGA accelerators, especially when they deal with large multi-dimensional data-sets. A large body of work focuses on reducing of off-chip transfers, but few authors try to improve the efficiency of transfers. This paper addresses the later issue by proposing (i) a compiler-based approach to accelerator's data layout to maximize contiguous access to off-chip memory, and (ii) data packing and runtime compression techniques that take advantage of this layout to further improve memory performance. We show that our approach can decrease the I/O cycles up to $7\times$ compared to un-optimized memory accesses.
While the body of research directed towards constructing and generating clarifying questions in mixed-initiative conversational search systems is vast, research aimed at processing and comprehending users' answers to such questions is scarce. To this end, we present a simple yet effective method for processing answers to clarifying questions, moving away from previous work that simply appends answers to the original query and thus potentially degrades retrieval performance. Specifically, we propose a classifier for assessing usefulness of the prompted clarifying question and an answer given by the user. Useful questions or answers are further appended to the conversation history and passed to a transformer-based query rewriting module. Results demonstrate significant improvements over strong non-mixed-initiative baselines. Furthermore, the proposed approach mitigates the performance drops when non useful questions and answers are utilized.
Strategies for partially observable Markov decision processes (POMDP) typically require memory. One way to represent this memory is via automata. We present a method to learn an automaton representation of a strategy using a modification of the L*-algorithm. Compared to the tabular representation of a strategy, the resulting automaton is dramatically smaller and thus also more explainable. Moreover, in the learning process, our heuristics may even improve the strategy's performance. In contrast to approaches that synthesize an automaton directly from the POMDP thereby solving it, our approach is incomparably more scalable.
Many iterative algorithms in optimization, computational geometry, computer algebra, and other areas of computer science require repeated computation of some algebraic expression whose input changes slightly from one iteration to the next. Although efficient data structures have been proposed for maintaining the solution of such algebraic expressions under low-rank updates, most of these results are only analyzed under exact arithmetic (real-RAM model and finite fields) which may not accurately reflect the complexity guarantees of real computers. In this paper, we analyze the stability and bit complexity of such data structures for expressions that involve the inversion, multiplication, addition, and subtraction of matrices under the word-RAM model. We show that the bit complexity only increases linearly in the number of matrix operations in the expression. In addition, we consider the bit complexity of maintaining the determinant of a matrix expression. We show that the required bit complexity depends on the logarithm of the condition number of matrices instead of the logarithm of their determinant. We also discuss rank maintenance and its connections to determinant maintenance. Our results have wide applications ranging from computational geometry (e.g., computing the volume of a polytope) to optimization (e.g., solving linear programs using the simplex algorithm).
We develop an analytical framework to characterize the set of optimal ReLU neural networks by reformulating the non-convex training problem as a convex program. We show that the global optima of the convex parameterization are given by a polyhedral set and then extend this characterization to the optimal set of the non-convex training objective. Since all stationary points of the ReLU training problem can be represented as optima of sub-sampled convex programs, our work provides a general expression for all critical points of the non-convex objective. We then leverage our results to provide an optimal pruning algorithm for computing minimal networks, establish conditions for the regularization path of ReLU networks to be continuous, and develop sensitivity results for minimal ReLU networks.
Generating proofs of unsatisfiability is a valuable capability of most SAT solvers, and is an active area of research for SMT solvers. This paper introduces the first method to efficiently generate proofs of unsatisfiability specifically for an important subset of SMT: SAT Modulo Monotonic Theories (SMMT), which includes many useful finite-domain theories (e.g., bit vectors and many graph-theoretic properties) and is used in production at Amazon Web Services. Our method uses propositional definitions of the theory predicates, from which it generates compact Horn approximations of the definitions, which lead to efficient DRAT proofs, leveraging the large investment the SAT community has made in DRAT. In experiments on practical SMMT problems, our proof generation overhead is minimal (7.41% geometric mean slowdown, 28.8% worst-case), and we can generate and check proofs for many problems that were previously intractable.
We study sets of mutually orthogonal Latin rectangles (MOLR), and a natural variation of the concept of self-orthogonal Latin squares which is applicable on larger sets of mutually orthogonal Latin squares and MOLR, namely that each Latin rectangle in a set of MOLR is isotopic to each other rectangle in the set. We call such a set of MOLR \emph{homogeneous}. In the course of doing this, we perform a complete enumeration of non-isotopic sets of $t$ mutually orthogonal $k\times n$ Latin rectangles for $k\leq n \leq 7$, for all $t < n$. Specifically, we keep track of homogeneous sets of MOLR, as well as sets of MOLR where the autotopism group acts transitively on the rectangles, and we call such sets of MOLR \emph{transitive}. We build the sets of MOLR row by row, and in this process we also keep track of which of the MOLR are homogeneous and/or transitive in each step of the construction process. We use the prefix \emph{stepwise} to refer to sets of MOLR with this property. Sets of MOLR are connected to other discrete objects, notably finite geometries and certain regular graphs. Here we observe that all projective planes of order at most 9 except the Hughes plane can be constructed from a stepwise transitive MOLR.
We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.