亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A novel spatial autoregressive model for panel data is introduced, which incorporates multilayer networks and accounts for time-varying relationships. Moreover, the proposed approach allows the structural variance to evolve smoothly over time and enables the analysis of shock propagation in terms of time-varying spillover effects. The framework is applied to analyse the dynamics of international relationships among the G7 economies and their impact on stock market returns and volatilities. The findings underscore the substantial impact of cooperative interactions and highlight discernible disparities in network exposure across G7 nations, along with nuanced patterns in direct and indirect spillover effects.

相關內容

We propose a general optimization-based framework for computing differentially private M-estimators and a new method for constructing differentially private confidence regions. Firstly, we show that robust statistics can be used in conjunction with noisy gradient descent or noisy Newton methods in order to obtain optimal private estimators with global linear or quadratic convergence, respectively. We establish local and global convergence guarantees, under both local strong convexity and self-concordance, showing that our private estimators converge with high probability to a small neighborhood of the non-private M-estimators. Secondly, we tackle the problem of parametric inference by constructing differentially private estimators of the asymptotic variance of our private M-estimators. This naturally leads to approximate pivotal statistics for constructing confidence regions and conducting hypothesis testing. We demonstrate the effectiveness of a bias correction that leads to enhanced small-sample empirical performance in simulations. We illustrate the benefits of our methods in several numerical examples.

There are many unsolved problems in vascular image segmentation, including vascular structural connectivity, scarce branches and missing small vessels. Obtaining vessels that preserve their correct topological structures is currently a crucial research issue, as it provides an overall view of one vascular system. In order to preserve the topology and accuracy of vessel segmentation, we proposed a novel Morphology Edge Attention Network (MEA-Net) for the segmentation of vessel-like structures, and an Optimal Geometric Matching Connection (OGMC) model to connect the broken vessel segments. The MEA-Net has an edge attention module that improves the segmentation of edges and small objects by morphology operation extracting boundary voxels on multi-scale. The OGMC model uses the concept of curve touching from differential geometry to filter out fragmented vessel endpoints, and then employs minimal surfaces to determine the optimal connection order between blood vessels. Finally, we calculate the geodesic to repair missing vessels under a given Riemannian metric. Our method achieves superior or competitive results compared to state-of-the-art methods on four datasets of 3D vascular segmentation tasks, both effectively reducing vessel broken and increasing vessel branch richness, yielding blood vessels with a more precise topological structure.

We propose a new method to construct a stationary process and random field with a given convex, decreasing covariance function and any one-dimensional marginal distribution. The result is a new class of stationary processes and random fields. The construction method provides a simple, unified approach for a wide range of covariance functions and any one-dimensional marginal distributions, and it allows a new way to model dependence structures in a stationary process/random field as its dependence structure is induced by the correlation structure of a few disjoint sets in the support set of the marginal distribution.

We describe an efficient method for the approximation of functions using radial basis functions (RBFs), and extend this to a solver for boundary value problems on irregular domains. The method is based on RBFs with centers on a regular grid defined on a bounding box, with some of the centers outside the computational domain. The equation is discretized using collocation with oversampling, with collocation points inside the domain only, resulting in a rectangular linear system to be solved in a least squares sense. The goal of this paper is the efficient solution of that rectangular system. We show that the least squares problem splits into a regular part, which can be expedited with the FFT, and a low rank perturbation, which is treated separately with a direct solver. The rank of the perturbation is influenced by the irregular shape of the domain and by the weak enforcement of boundary conditions at points along the boundary. The solver extends the AZ algorithm which was previously proposed for function approximation involving frames and other overcomplete sets. The solver has near optimal log-linear complexity for univariate problems, and loses optimality for higher-dimensional problems but remains faster than a direct solver.

Integro-differential equations, analyzed in this work, comprise an important class of models of continuum media with nonlocal interactions. Examples include peridynamics, population and opinion dynamics, the spread of disease models, and nonlocal diffusion, to name a few. They also arise naturally as a continuum limit of interacting dynamical systems on networks. Many real-world networks, including neuronal, epidemiological, and information networks, exhibit self-similarity, which translates into self-similarity of the spatial domain of the continuum limit. For a class of evolution equations with nonlocal interactions on self-similar domains, we construct a discontinuous Galerkin method and develop a framework for studying its convergence. Specifically, for the model at hand, we identify a natural scale of function spaces, which respects self-similarity of the spatial domain, and estimate the rate of convergence under minimal assumptions on the regularity of the interaction kernel. The analytical results are illustrated by numerical experiments on a model problem.

The impact of outliers and anomalies on model estimation and data processing is of paramount importance, as evidenced by the extensive body of research spanning various fields over several decades: thousands of research papers have been published on the subject. As a consequence, numerous reviews, surveys, and textbooks have sought to summarize the existing literature, encompassing a wide range of methods from both the statistical and data mining communities. While these endeavors to organize and summarize the research are invaluable, they face inherent challenges due to the pervasive nature of outliers and anomalies in all data-intensive applications, irrespective of the specific application field or scientific discipline. As a result, the resulting collection of papers remains voluminous and somewhat heterogeneous. To address the need for knowledge organization in this domain, this paper implements the first systematic meta-survey of general surveys and reviews on outlier and anomaly detection. Employing a classical systematic survey approach, the study collects nearly 500 papers using two specialized scientific search engines. From this comprehensive collection, a subset of 56 papers that claim to be general surveys on outlier detection is selected using a snowball search technique to enhance field coverage. A meticulous quality assessment phase further refines the selection to a subset of 25 high-quality general surveys. Using this curated collection, the paper investigates the evolution of the outlier detection field over a 20-year period, revealing emerging themes and methods. Furthermore, an analysis of the surveys sheds light on the survey writing practices adopted by scholars from different communities who have contributed to this field. Finally, the paper delves into several topics where consensus has emerged from the literature. These include taxonomies of outlier types, challenges posed by high-dimensional data, the importance of anomaly scores, the impact of learning conditions, difficulties in benchmarking, and the significance of neural networks. Non-consensual aspects are also discussed, particularly the distinction between local and global outliers and the challenges in organizing detection methods into meaningful taxonomies.

Gaussian graphical models are useful tools for conditional independence structure inference of multivariate random variables. Unfortunately, Bayesian inference of latent graph structures is challenging due to exponential growth of $\mathcal{G}_n$, the set of all graphs in $n$ vertices. One approach that has been proposed to tackle this problem is to limit search to subsets of $\mathcal{G}_n$. In this paper, we study subsets that are vector subspaces with the cycle space $\mathcal{C}_n$ as main example. We propose a novel prior on $\mathcal{C}_n$ based on linear combinations of cycle basis elements and present its theoretical properties. Using this prior, we implement a Markov chain Monte Carlo algorithm, and show that (i) posterior edge inclusion estimates computed with our technique are comparable to estimates from the standard technique despite searching a smaller graph space, and (ii) the vector space perspective enables straightforward implementation of MCMC algorithms.

This research note provides algebraic characterizations of the least model, subsumption, and uniform equivalence of propositional Krom logic programs.

Normal modal logics extending the logic K4.3 of linear transitive frames are known to lack the Craig interpolation property, except some logics of bounded depth such as S5. We turn this `negative' fact into a research question and pursue a non-uniform approach to Craig interpolation by investigating the following interpolant existence problem: decide whether there exists a Craig interpolant between two given formulas in any fixed logic above K4.3. Using a bisimulation-based characterisation of interpolant existence for descriptive frames, we show that this problem is decidable and coNP-complete for all finitely axiomatisable normal modal logics containing K4.3. It is thus not harder than entailment in these logics, which is in sharp contrast to other recent non-uniform interpolation results. We also extend our approach to Priorean temporal logics (with both past and future modalities) over the standard time flows-the integers, rationals, reals, and finite strict linear orders-none of which is blessed with the Craig interpolation property.

We discuss avoidance of sure loss and coherence results for semicopulas and standardized functions, i.e., for grounded, 1-increasing functions with value $1$ at $(1,1,\ldots, 1)$. We characterize the existence of a $k$-increasing $n$-variate function $C$ fulfilling $A\leq C\leq B$ for standardized $n$-variate functions $A,B$ and discuss the method for constructing this function. Our proofs also include procedures for extending functions on some countably infinite mesh to functions on the unit box. We provide a characterization when $A$ respectively $B$ coincides with the pointwise infimum respectively supremum of the set of all $k$-increasing $n$-variate functions $C$ fulfilling $A\leq C\leq B$.

北京阿比特科技有限公司