We consider a quantum and classical version multi-party function computation problem with $n$ players, where players $2, \dots, n$ need to communicate appropriate information to player 1, so that a "generalized" inner product function with an appropriate promise can be calculated. The communication complexity of a protocol is the total number of bits that need to be communicated. When $n$ is prime and for our chosen function, we exhibit a quantum protocol (with complexity $(n-1) \log n$ bits) and a classical protocol (with complexity $(n-1)^2 (\log n^2$) bits). In the quantum protocol, the players have access to entangled qudits but the communication is still classical. Furthermore, we present an integer linear programming formulation for determining a lower bound on the classical communication complexity. This demonstrates that our quantum protocol is strictly better than classical protocols.
Moment models with suitable closure can lead to accurate and computationally efficient solvers for particle transport. Hence, we propose a new asymptotic preserving scheme for the M1 model of linear transport that works uniformly for any Knudsen number. Our idea is to apply the M1 closure at the numerical level to an existing asymptotic preserving scheme for the corresponding kinetic equation, namely the Unified Gas Kinetic scheme (UGKS) originally proposed in [27] and extended to linear transport in [24]. In order to ensure the moments realizability in this new scheme, the UGKS positivity needs to be maintained. We propose a new density reconstruction in time to obtain this property. A second order extension is also suggested and validated. Several test cases show the performances of this new scheme.
We consider the contextual bandit problem where at each time, the agent only has access to a noisy version of the context and the error variance (or an estimator of this variance). This setting is motivated by a wide range of applications where the true context for decision-making is unobserved, and only a prediction of the context by a potentially complex machine learning algorithm is available. When the context error is non-vanishing, classical bandit algorithms fail to achieve sublinear regret. We propose the first online algorithm in this setting with sublinear regret guarantees under mild conditions. The key idea is to extend the measurement error model in classical statistics to the online decision-making setting, which is nontrivial due to the policy being dependent on the noisy context observations. We further demonstrate the benefits of the proposed approach in simulation environments based on synthetic and real digital intervention datasets.
This paper focuses on the numerical scheme for multiple-delay stochastic differential equations with partially H\"older continuous drifts and locally H\"older continuous diffusion coefficients. To handle with the superlinear terms in coefficients, the truncated Euler-Maruyama scheme is employed. Under the given conditions, the convergence rates at time $T$ in both $\mathcal{L}^{1}$ and $\mathcal{L}^{2}$ senses are shown by virtue of the Yamada-Watanabe approximation technique. Moreover, the convergence rates over a finite time interval $[0,T]$ are also obtained. Additionally, it should be noted that the convergence rates will not be affected by the number of delay variables. Finally, we perform the numerical experiments on the stochastic volatility model to verify the reliability of the theoretical results.
We establish an invariance principle for polynomial functions of $n$ independent high-dimensional random vectors, and also show that the obtained rates are nearly optimal. Both the dimension of the vectors and the degree of the polynomial are permitted to grow with $n$. Specifically, we obtain a finite sample upper bound for the error of approximation by a polynomial of Gaussians, measured in Kolmogorov distance, and extend it to functions that are approximately polynomial in a mean squared error sense. We give a corresponding lower bound that shows the invariance principle holds up to polynomial degree $o(\log n)$. The proof is constructive and adapts an asymmetrisation argument due to V. V. Senatov. As applications, we obtain a higher-order delta method with possibly non-Gaussian limits, and generalise a number of known results on high-dimensional and infinite-order U-statistics, and on fluctuations of subgraph counts.
We show that for log-concave real random variables with fixed variance the Shannon differential entropy is minimized for an exponential random variable. We apply this result to derive upper bounds on capacities of additive noise channels with log-concave noise. We also improve constants in the reverse entropy power inequalities for log-concave random variables.
The $\mathrm{Caus}[-]$ construction takes a base category of ``raw materials'' and builds a category of higher order causal processes, that is a category whose types encode causal (a.k.a. signalling) constraints between collections of systems. Notable examples are categories of higher-order stochastic maps and higher-order quantum channels. Well-typedness in $\mathrm{Caus}[-]$ corresponds to a composition of processes being causally consistent, in the sense that any choice of local processes of the prescribed types yields an overall process respecting causality constraints. It follows that closed processes always occur with probability 1, ruling out e.g. causal paradoxes arising from time loops. It has previously been shown that $\mathrm{Caus}[\mathcal{C}]$ gives a model of MLL+MIX and BV logic, hence these logics give sufficient conditions for causal consistency, but they fail to provide a complete characterisation. In this follow-on work, we introduce graph types as a tool to examine causal structures over graphs in this model. We explore their properties, standard forms, and equivalent definitions; in particular, a process obeys all signalling constraints of the graph iff it is expressible as an affine combination of factorisations into local causal processes connected according to the edges of the graph. The properties of graph types are then used to prove completeness for causal consistency of a new causal logic that conservatively extends pomset logic. The crucial extra ingredient is a notion of distinguished atoms that correspond to first-order states, which only admit a flow of information in one direction. Using the fact that causal logic conservatively extends pomset logic, we finish by giving a physically-meaningful interpretation to a separating statement between pomset and BV.
Machine learning (ML) methods, which fit to data the parameters of a given parameterized model class, have garnered significant interest as potential methods for learning surrogate models for complex engineering systems for which traditional simulation is expensive. However, in many scientific and engineering settings, generating high-fidelity data on which to train ML models is expensive, and the available budget for generating training data is limited. ML models trained on the resulting scarce high-fidelity data have high variance and are sensitive to vagaries of the training data set. We propose a new multifidelity training approach for scientific machine learning that exploits the scientific context where data of varying fidelities and costs are available; for example high-fidelity data may be generated by an expensive fully resolved physics simulation whereas lower-fidelity data may arise from a cheaper model based on simplifying assumptions. We use the multifidelity data to define new multifidelity Monte Carlo estimators for the unknown parameters of linear regression models, and provide theoretical analyses that guarantee the approach's accuracy and improved robustness to small training budgets. Numerical results verify the theoretical analysis and demonstrate that multifidelity learned models trained on scarce high-fidelity data and additional low-fidelity data achieve order-of-magnitude lower model variance than standard models trained on only high-fidelity data of comparable cost. This illustrates that in the scarce data regime, our multifidelity training strategy yields models with lower expected error than standard training approaches.
Backtracking linesearch is the de facto approach for minimizing continuously differentiable functions with locally Lipschitz gradient. In recent years, it has been shown that in the convex setting it is possible to avoid linesearch altogether, and to allow the stepsize to adapt based on a local smoothness estimate without any backtracks or evaluations of the function value. In this work we propose an adaptive proximal gradient method, adaPG, that uses novel estimates of the local smoothness modulus which leads to less conservative stepsize updates and that can additionally cope with nonsmooth terms. This idea is extended to the primal-dual setting where an adaptive three-term primal-dual algorithm, adaPD, is proposed which can be viewed as an extension of the PDHG method. Moreover, in this setting the "essentially" fully adaptive variant adaPD$^+$ is proposed that avoids evaluating the linear operator norm by invoking a backtracking procedure, that, remarkably, does not require extra gradient evaluations. Numerical simulations demonstrate the effectiveness of the proposed algorithms compared to the state of the art.
Existing schemes for demonstrating quantum computational advantage are subject to various practical restrictions, including the hardness of verification and challenges in experimental implementation. Meanwhile, analog quantum simulators have been realized in many experiments to study novel physics. In this work, we propose a quantum advantage protocol based on single-step Feynman-Kitaev verification of an analog quantum simulation, in which the verifier need only run an $O(\lambda^2)$-time classical computation, and the prover need only prepare $O(1)$ samples of a history state and perform $O(\lambda^2)$ single-qubit measurements, for a security parameter $\lambda$. We also propose a near-term feasible strategy for honest provers and discuss potential experimental realizations.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.