亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound has a main complexity component, a variant of Talagrand's $\gamma$ functional for the deflated function class, as well as an instance-dependent deviation term, measured by an appropriately scaled version of a suitable norm. Both of these terms are expressed using certain coefficients formulated based on the relevant cumulant generating functions. We also provide more explicit approximations for the mentioned coefficients, when the function class lies in a given (exponential type) Orlicz space.

相關內容

While there exists several inferential methods for analyzing functional data in factorial designs, there is a lack of statistical tests that are valid (i) in general designs, (ii) under non-restrictive assumptions on the data generating process and (iii) allow for coherent post-hoc analyses. In particular, most existing methods assume Gaussianity or equal covariance functions across groups (homoscedasticity) and are only applicable for specific study designs that do not allow for evaluation of interactions. Moreover, all available strategies are only designed for testing global hypotheses and do not directly allow a more in-depth analysis of multiple local hypotheses. To address the first two problems (i)-(ii), we propose flexible integral-type test statistics that are applicable in general factorial designs under minimal assumptions on the data generating process. In particular, we neither postulate homoscedasticity nor Gaussianity. To approximate the statistics' null distribution, we adopt a resampling approach and validate it methodologically. Finally, we use our flexible testing framework to (iii) infer several local null hypotheses simultaneously. To allow for powerful data analysis, we thereby take the complex dependencies of the different local test statistics into account. In extensive simulations we confirm that the new methods are flexibly applicable. Two illustrate data analyses complete our study. The new testing procedures are implemented in the R package multiFANOVA, which will be available on CRAN soon.

Separating signals from an additive mixture may be an unnecessarily hard problem when one is only interested in specific properties of a given signal. In this work, we tackle simpler "statistical component separation" problems that focus on recovering a predefined set of statistical descriptors of a target signal from a noisy mixture. Assuming access to samples of the noise process, we investigate a method devised to match the statistics of the solution candidate corrupted by noise samples with those of the observed mixture. We first analyze the behavior of this method using simple examples with analytically tractable calculations. Then, we apply it in an image denoising context employing 1) wavelet-based descriptors, 2) ConvNet-based descriptors on astrophysics and ImageNet data. In the case of 1), we show that our method better recovers the descriptors of the target data than a standard denoising method in most situations. Additionally, despite not constructed for this purpose, it performs surprisingly well in terms of peak signal-to-noise ratio on full signal reconstruction. In comparison, representation 2) appears less suitable for image denoising. Finally, we extend this method by introducing a diffusive stepwise algorithm which gives a new perspective to the initial method and leads to promising results for image denoising under specific circumstances.

This work introduces a novel cause-effect relation in Markov decision processes using the probability-raising principle. Initially, sets of states as causes and effects are considered, which is subsequently extended to regular path properties as effects and then as causes. The paper lays the mathematical foundations and analyzes the algorithmic properties of these cause-effect relations. This includes algorithms for checking cause conditions given an effect and deciding the existence of probability-raising causes. As the definition allows for sub-optimal coverage properties, quality measures for causes inspired by concepts of statistical analysis are studied. These include recall, coverage ratio and f-score. The computational complexity for finding optimal causes with respect to these measures is analyzed.

Inspired by Solomonoffs theory of inductive inference, we propose a prior based on circuit complexity. There are several advantages to this approach. First, it relies on a complexity measure that does not depend on the choice of UTM. There is one universal definition for Boolean circuits involving an universal operation such as nand with simple conversions to alternative definitions such as and, or, and not. Second, there is no analogue of the halting problem. The output value of a circuit can be calculated recursively by computer in time proportional to the number of gates, while a short program may run for a very long time. Our prior assumes that a Boolean function, or equivalently, Boolean string of fixed length, is generated by some Bayesian mixture of circuits. This model is appropriate for learning Boolean functions from partial information, a problem often encountered within machine learning as "binary classification." We argue that an inductive bias towards simple explanations as measured by circuit complexity is appropriate for this problem.

In data-driven optimization, sample average approximation is known to suffer from the so-called optimizer's curse that causes optimistic bias in evaluating the solution performance. This can be tackled by adding a "margin" to the estimated objective value, or via distributionally robust optimization (DRO), a fast-growing approach based on worst-case analysis, which gives a protective bound on the attained objective value. However, in all these existing approaches, a statistically guaranteed bound on the true solution performance either requires restrictive conditions and knowledge on the objective function complexity, or otherwise exhibits an over-conservative rate that depends on the distribution dimension. We argue that a special type of DRO offers strong theoretical advantages in regard to these challenges: It attains a statistical bound on the true solution performance that is the tightest possible in terms of exponential decay rate, for a wide class of objective functions that notably does not hinge on function complexity. Correspondingly, its calibration also does not require any complexity information. This DRO uses an ambiguity set based on a KL-divergence smoothed by the Wasserstein or Levy-Prokhorov distance via a suitable distance optimization. Computationally, we also show that such a DRO, and its generalized version using smoothed $f$-divergence, is not much harder than standard DRO problems using the $f$-divergence or Wasserstein distance, thus supporting the strengths of such DRO as both statistically optimal and computationally viable.

Entropic optimal transport (EOT) presents an effective and computationally viable alternative to unregularized optimal transport (OT), offering diverse applications for large-scale data analysis. In this work, we derive novel statistical bounds for empirical plug-in estimators of the EOT cost and show that their statistical performance in the entropy regularization parameter $\epsilon$ and the sample size $n$ only depends on the simpler of the two probability measures. For instance, under sufficiently smooth costs this yields the parametric rate $n^{-1/2}$ with factor $\epsilon^{-d/2}$, where $d$ is the minimum dimension of the two population measures. This confirms that empirical EOT also adheres to the lower complexity adaptation principle, a hallmark feature only recently identified for unregularized OT. As a consequence of our theory, we show that the empirical entropic Gromov-Wasserstein distance and its unregularized version for measures on Euclidean spaces also obey this principle. Additionally, we comment on computational aspects and complement our findings with Monte Carlo simulations. Our techniques employ empirical process theory and rely on a dual formulation of EOT over a single function class. Crucial to our analysis is the observation that the entropic cost-transformation of a function class does not increase its uniform metric entropy by much.

We study the randomized $n$-th minimal errors (and hence the complexity) of vector valued approximation. In a recent paper by the author [Randomized complexity of parametric integration and the role of adaption I. Finite dimensional case (preprint)] a long-standing problem of Information-Based Complexity was solved: Is there a constant $c>0$ such that for all linear problems $\mathcal{P}$ the randomized non-adaptive and adaptive $n$-th minimal errors can deviate at most by a factor of $c$? That is, does the following hold for all linear $\mathcal{P}$ and $n\in {\mathbb N}$ \begin{equation*} e_n^{\rm ran-non} (\mathcal{P})\le ce_n^{\rm ran} (\mathcal{P}) \, {\bf ?} \end{equation*} The analysis of vector-valued mean computation showed that the answer is negative. More precisely, there are instances of this problem where the gap between non-adaptive and adaptive randomized minimal errors can be (up to log factors) of the order $n^{1/8}$. This raises the question about the maximal possible deviation. In this paper we show that for certain instances of vector valued approximation the gap is $n^{1/2}$ (again, up to log factors).

We present an artificial intelligence (AI) method for automatically computing the melting point based on coexistence simulations in the NPT ensemble. Given the interatomic interaction model, the method makes decisions regarding the number of atoms and temperature at which to conduct simulations, and based on the collected data predicts the melting point along with the uncertainty, which can be systematically improved with more data. We demonstrate how incorporating physical models of the solid-liquid coexistence evolution enhances the AI method's accuracy and enables optimal decision-making to effectively reduce predictive uncertainty. To validate our approach, we compare our results with approximately 20 melting point calculations from the literature. Remarkably, we observe significant deviations in about one-third of the cases, underscoring the need for accurate and reliable AI-based algorithms for materials property calculations.

We focus on analyzing the classical stochastic projected gradient methods under a general dependent data sampling scheme for constrained smooth nonconvex optimization. We show the worst-case rate of convergence $\tilde{O}(t^{-1/4})$ and complexity $\tilde{O}(\varepsilon^{-4})$ for achieving an $\varepsilon$-near stationary point in terms of the norm of the gradient of Moreau envelope and gradient mapping. While classical convergence guarantee requires i.i.d. data sampling from the target distribution, we only require a mild mixing condition of the conditional distribution, which holds for a wide class of Markov chain sampling algorithms. This improves the existing complexity for the constrained smooth nonconvex optimization with dependent data from $\tilde{O}(\varepsilon^{-8})$ to $\tilde{O}(\varepsilon^{-4})$ with a significantly simpler analysis. We illustrate the generality of our approach by deriving convergence results with dependent data for stochastic proximal gradient methods, adaptive stochastic gradient algorithm AdaGrad and stochastic gradient algorithm with heavy ball momentum. As an application, we obtain first online nonnegative matrix factorization algorithms for dependent data based on stochastic projected gradient methods with adaptive step sizes and optimal rate of convergence.

In this work, we present a generic step-size choice for the ADMM type proximal algorithms. It admits a closed-form expression and is theoretically optimal with respect to a worst-case convergence rate bound. It is simply given by the ratio of Euclidean norms of the dual and primal solutions, i.e., $ ||{\lambda}^\star|| / ||{x}^\star||$. Numerical tests show that its practical performance is near-optimal in general. The only challenge is that such a ratio is not known a priori and we provide two strategies to address it. The derivation of our step-size choice is based on studying the fixed-point structure of ADMM using the proximal operator. However, we demonstrate that the classical proximal operator definition contains an input scaling issue. This leads to a scaled step-size optimization problem which would yield a false solution. Such an issue is naturally avoided by our proposed new definition of the proximal operator. A series of its properties is established.

北京阿比特科技有限公司