This paper introduces a novel one-stage end-to-end detector specifically designed to detect small lesions in medical images. Precise localization of small lesions presents challenges due to their appearance and the diverse contextual backgrounds in which they are found. To address this, our approach introduces a new type of pixel-based anchor that dynamically moves towards the targeted lesion for detection. We refer to this new architecture as GravityNet, and the novel anchors as gravity points since they appear to be "attracted" by the lesions. We conducted experiments on two well-established medical problems involving small lesions to evaluate the performance of the proposed approach: microcalcifications detection in digital mammograms and microaneurysms detection in digital fundus images. Our method demonstrates promising results in effectively detecting small lesions in these medical imaging tasks.
Visual object navigation using learning methods is one of the key tasks in mobile robotics. This paper introduces a new representation of a scene semantic map formed during the embodied agent interaction with the indoor environment. It is based on a neural network method that adjusts the weights of the segmentation model with backpropagation of the predicted fusion loss values during inference on a regular (backward) or delayed (forward) image sequence. We have implemented this representation into a full-fledged navigation approach called SkillTron, which can select robot skills from end-to-end policies based on reinforcement learning and classic map-based planning methods. The proposed approach makes it possible to form both intermediate goals for robot exploration and the final goal for object navigation. We conducted intensive experiments with the proposed approach in the Habitat environment, which showed a significant superiority in navigation quality metrics compared to state-of-the-art approaches. The developed code and used custom datasets are publicly available at github.com/AIRI-Institute/skill-fusion.
This paper considers image change detection with only a small number of samples, which is a significant problem in terms of a few annotations available. A major impediment of image change detection task is the lack of large annotated datasets covering a wide variety of scenes. Change detection models trained on insufficient datasets have shown poor generalization capability. To address the poor generalization issue, we propose using simple image processing methods for generating synthetic but informative datasets, and design an early fusion network based on object detection which could outperform the siamese neural network. Our key insight is that the synthetic data enables the trained model to have good generalization ability for various scenarios. We compare the model trained on the synthetic data with that on the real-world data captured from a challenging dataset, CDNet, using six different test sets. The results demonstrate that the synthetic data is informative enough to achieve higher generalization ability than the insufficient real-world data. Besides, the experiment shows that utilizing a few (often tens of) samples to fine-tune the model trained on the synthetic data will achieve excellent results.
This paper presents a comprehensive evaluation of GPT-4V's capabilities across diverse medical imaging tasks, including Radiology Report Generation, Medical Visual Question Answering (VQA), and Visual Grounding. While prior efforts have explored GPT-4V's performance in medical image analysis, to the best of our knowledge, our study represents the first quantitative evaluation on publicly available benchmarks. Our findings highlight GPT-4V's potential in generating descriptive reports for chest X-ray images, particularly when guided by well-structured prompts. Meanwhile, its performance on the MIMIC-CXR dataset benchmark reveals areas for improvement in certain evaluation metrics, such as CIDEr. In the domain of Medical VQA, GPT-4V demonstrates proficiency in distinguishing between question types but falls short of the VQA-RAD benchmark in terms of accuracy. Furthermore, our analysis finds the limitations of conventional evaluation metrics like the BLEU scores, advocating for the development of more semantically robust assessment methods. In the field of Visual Grounding, GPT-4V exhibits preliminary promise in recognizing bounding boxes, but its precision is lacking, especially in identifying specific medical organs and signs. Our evaluation underscores the significant potential of GPT-4V in the medical imaging domain, while also emphasizing the need for targeted refinements to fully unlock its capabilities.
Synthetic biologists and molecular programmers design novel nucleic acid reactions, with many potential applications. Good visualization tools are needed to help domain experts make sense of the complex outputs of folding pathway simulations of such reactions. Here we present ViDa, a new approach for visualizing DNA reaction folding trajectories over the energy landscape of secondary structures. We integrate a deep graph embedding model with common dimensionality reduction approaches, to map high-dimensional data onto 2D Euclidean space. We assess ViDa on two well-studied and contrasting DNA hybridization reactions. Our preliminary results suggest that ViDa's visualization successfully separates trajectories with different folding mechanisms, thereby providing useful insight to users, and is a big improvement over the current state-of-the-art in DNA kinetics visualization.
This is the second in a series of articles aimed at exploring the relationship between the complexity classes of P and NP. The research in this article aims to find conditions of an algorithmic nature that are necessary and sufficient to transform any Boolean function in conjunctive normal form into a specific form that guarantees the satisfiability of this function. To find such conditions, we use the concept of a special covering of a set introduced in [13], and investigate the connection between this concept and the notion of satisfiability of Boolean functions. As shown, the problem of existence of a special covering for a set is equivalent to the Boolean satisfiability problem. Thus, an important result is the proof of the existence of necessary and sufficient conditions that make it possible to find out if there is a special covering for the set under the special decomposition. This result allows us to formulate the necessary and sufficient algorithmic conditions for Boolean satisfiability, considering the function in conjunctive normal form as a set of clauses. In parallel, as a result of the aforementioned algorithmic procedure, we obtain the values of the variables that ensure the satisfiability of this function. The terminology used related to graph theory, set theory, Boolean functions and complexity theory is consistent with the terminology in [1], [2], [3], [4]. The newly introduced terms are not found in use by other authors and do not contradict to other terms.
Thermal images have various applications in security, medical and industrial domains. This paper proposes a practical deep-learning approach for thermal image classification. Accurate and efficient classification of thermal images poses a significant challenge across various fields due to the complex image content and the scarcity of annotated datasets. This work uses a convolutional neural network (CNN) architecture, specifically ResNet-50 and VGGNet-19, to extract features from thermal images. This work also applied Kalman filter on thermal input images for image denoising. The experimental results demonstrate the effectiveness of the proposed approach in terms of accuracy and efficiency.
Several applications require the super-resolution of noisy images and the preservation of geometrical and texture features. State-of-the-art super-resolution methods do not account for noise and generally enhance the output image's artefacts (e.g., aliasing, blurring). We propose a learning-based method that accounts for the presence of noise and preserves the properties of the input image, as measured by quantitative metrics (e.g., normalised crossed correlation, normalised mean squared error, peak-signal-to-noise-ration, structural similarity feature-based similarity, universal image quality). We train our network to up-sample a low-resolution noisy image while preserving its properties. We perform our tests on the Cineca Marconi100 cluster, at the 26th position in the top500 list. The experimental results show that our method outperforms learning-based methods, has comparable results with standard methods, preserves the properties of the input image as contours, brightness, and textures, and reduces the artefacts. As average quantitative metrics, our method has a PSNR value of 23.81 on the super-resolution of Gaussian noise images with a 2X up-sampling factor. In contrast, previous work has a PSNR value of 23.09 (standard method) and 21.78 (learning-based method). Our learning-based and quality-preserving super-resolution improves the high-resolution prediction of noisy images with respect to state-of-the-art methods with different noise types and up-sampling factors.
This paper investigates the multiple testing problem for high-dimensional sparse binary sequences, motivated by the crowdsourcing problem in machine learning. We study the empirical Bayes approach for multiple testing on the high-dimensional Bernoulli model with a conjugate spike and uniform slab prior. We first show that the hard thresholding rule deduced from the posterior distribution is suboptimal. Consequently, the $\ell$-value procedure constructed using this posterior tends to be overly conservative in estimating the false discovery rate (FDR). We then propose two new procedures based on $\adj\ell$-values and $q$-values to correct this issue. Sharp frequentist theoretical results are obtained, demonstrating that both procedures can effectively control the FDR under sparsity. Numerical experiments are conducted to validate our theory in finite samples. To our best knowledge, this work provides the first uniform FDR control result in multiple testing for high-dimensional sparse binary data.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).