The recent promotion of sustainable urban planning combined with a growing need for public interventions to improve well-being and health have led to an increased collective interest for green spaces in and around cities. In particular, parks have proven a wide range of benefits in urban areas. This also means inequities in park accessibility may contribute to health inequities. In this work, we showcase the application of classic tools from Operations Research to assist decision-makers to improve parks' accessibility, distribution and design. Given the context of public decision-making, we are particularly concerned with equity and environmental justice, and are focused on an advanced assessment of users' behavior through a spatial interaction model. We present a two-stage fair facility location and design model, which serves as a template model to assist public decision-makers at the city-level for the planning of urban green spaces. The first-stage of the optimization model is about the optimal city-budget allocation to neighborhoods based on a data exposing inequality attributes. The second-stage seeks the optimal location and design of parks for each neighborhood, and the objective consists of maximizing the total expected probability of individuals visiting parks. We show how to reformulate the latter as a mixed-integer linear program. We further introduce a clustering method to reduce the size of the problem and determine a close to optimal solution within reasonable time. The model is tested using the case study of the city of Montreal and comparative results are discussed in detail to justify the performance of the model.
Since its inception, the field of unbiased learning to rank (ULTR) has remained very active and has seen several impactful advancements in recent years. This tutorial provides both an introduction to the core concepts of the field and an overview of recent advancements in its foundations along with several applications of its methods. The tutorial is divided into four parts: Firstly, we give an overview of the different forms of bias that can be addressed with ULTR methods. Secondly, we present a comprehensive discussion of the latest estimation techniques in the ULTR field. Thirdly, we survey published results of ULTR in real-world applications. Fourthly, we discuss the connection between ULTR and fairness in ranking. We end by briefly reflecting on the future of ULTR research and its applications. This tutorial is intended to benefit both researchers and industry practitioners who are interested in developing new ULTR solutions or utilizing them in real-world applications.
Urban rail transit provides significant comprehensive benefits such as large traffic volume and high speed, serving as one of the most important components of urban traffic construction management and congestion solution. Using real passenger flow data of an Asian subway system from April to June of 2018, this work analyzes the space-time distribution of the passenger flow using short-term traffic flow prediction. Stations are divided into four types for passenger flow forecasting, and meteorological records are collected for the same period. Then, machine learning methods with different inputs are applied and multivariate regression is performed to evaluate the improvement effect of each weather element on passenger flow forecasting of representative metro stations on hourly basis. Our results show that by inputting weather variables the precision of prediction on weekends enhanced while the performance on weekdays only improved marginally, while the contribution of different elements of weather differ. Also, different categories of stations are affected differently by weather. This study provides a possible method to further improve other prediction models, and attests to the promise of data-driven analytics for optimization of short-term scheduling in transit management.
Artificial neural networks (ANNs) are increasingly used as research models, but questions remain about their generalizability and representational invariance. Biological neural networks under social constraints evolved to enable communicable representations, demonstrating generalization capabilities. This study proposes a communication protocol between cooperative agents to analyze the formation of individual and shared abstractions and their impact on task performance. This communication protocol aims to mimic language features by encoding high-dimensional information through low-dimensional representation. Using grid-world mazes and reinforcement learning, teacher ANNs pass a compressed message to a student ANN for better task completion. Through this, the student achieves a higher goal-finding rate and generalizes the goal location across task worlds. Further optimizing message content to maximize student reward improves information encoding, suggesting that an accurate representation in the space of messages requires bi-directional input. This highlights the role of language as a common representation between agents and its implications on generalization capabilities.
Planning trajectories for automated vehicles in urban environments requires methods with high generality, long planning horizons, and fast update rates. Using a path-velocity decomposition, we contribute a novel planning framework, which generates foresighted trajectories and can handle a wide variety of state and control constraints effectively. In contrast to related work, the proposed optimal control problems are formulated over space rather than time. This spatial formulation decouples environmental constraints from the optimization variables, which allows the application of simple, yet efficient shooting methods. To this end, we present a tailored solution strategy based on ILQR, in the Augmented Lagrangian framework, to rapidly minimize the trajectory objective costs, even under infeasible initial solutions. Evaluations in simulation and on a full-sized automated vehicle in real-world urban traffic show the real-time capability and versatility of the proposed approach.
With nearly 2.5m users, onion services have become the prominent part of the darkweb. Over the last five years alone, the number of onion domains has increased 20x, reaching more than 700k unique domains in January 2022. As onion services host various types of illicit content, they have become a valuable resource for darkweb research and an integral part of e-crime investigation and threat intelligence. However, this content is largely un-indexed by today's search engines and researchers have to rely on outdated or manually-collected datasets that are limited in scale, scope, or both. To tackle this problem, we built Dizzy: An open-source crawling and analysis system for onion services. Dizzy implements novel techniques to explore, update, check, and classify onion services at scale, without overwhelming the Tor network. We deployed Dizzy in April 2021 and used it to analyze more than 63.3m crawled onion webpages, focusing on domain operations, web content, cryptocurrency usage, and web graph. Our main findings show that onion services are unreliable due to their high churn rate, have a relatively small number of reachable domains that are often similar and illicit, enjoy a growing underground cryptocurrency economy, and have a graph that is relatively tightly-knit to, but topologically different from, the regular web's graph.
Recent development in wireless communications has provided many reliable solutions to emergency response issues, especially in scenarios with dysfunctional or congested base stations. Prior studies on underwater emergency communications, however, remain under-studied, which poses a need for combining the merits of different underwater communication links (UCLs) and the manipulability of unmanned vehicles. To realize energy-efficient underwater emergency communications, we develop a novel underwater emergency communication network (UECN) assisted by multiple links, including underwater light, acoustic, and radio frequency links, and autonomous underwater vehicles (AUVs) for collecting and transmitting underwater emergency data. First, we determine the optimal emergency response mode for an underwater sensor node (USN) using greedy search and reinforcement learning (RL), so that isolated USNs (I-USNs) can be identified. Second, according to the distribution of I-USNs, we dispatch AUVs to assist I-USNs in data transmission, i.e., jointly optimizing the locations and controls of AUVs to minimize the time for data collection and underwater movement. Finally, an adaptive clustering-based multi-objective evolutionary algorithm is proposed to jointly optimize the number of AUVs and the transmit power of I-USNs, subject to a given set of constraints on transmit power, signal-to-interference-plus-noise ratios (SINRs), outage probabilities, and energy, which achieves the best tradeoff between the maximum emergency response time (ERT) and the total energy consumption (EC). Simulation results indicate that our proposed approach outperforms benchmark schemes in terms of energy efficiency (EE), contributing to underwater emergency communications.
Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.
Automated Driving Systems (ADS) have made great achievements in recent years thanks to the efforts from both academia and industry. A typical ADS is composed of multiple modules, including sensing, perception, planning and control, which brings together the latest advances in multiple domains. Despite these achievements, safety assurance of the systems is still of great significance, since the unsafe behavior of ADS can bring catastrophic consequences and unacceptable economic and social losses. Testing is an important approach to system validation for the deployment in practice; in the context of ADS, it is extremely challenging, due to the system complexity and multidisciplinarity. There has been a great deal of literature that focuses on the testing of ADS, and a number of surveys have also emerged to summarize the technical advances. However, most of these surveys focus on the system-level testing that is performed within software simulators, and thereby ignore the distinct features of individual modules. In this paper, we provide a comprehensive survey on the existing ADS testing literature, which takes into account both module-level and system-level testing. Specifically, we make the following contributions: (1) we build a threat model that reveals the potential safety threats for each module of an ADS; (2) we survey the module-level testing techniques for ADS and highlight the technical differences affected by the properties of the modules; (3) we also survey the system-level testing techniques, but we focus on empirical studies that take a bird's-eye view on the system, the problems due to the collaborations between modules, and the gaps between ADS testing in simulators and real world; (4) we identify the challenges and opportunities in ADS testing, which facilitates the future research in this field.
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.