亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Confounding bias and selection bias are two significant challenges to the validity of conclusions drawn from applied causal inference. The latter can arise through informative missingness, wherein relevant information about units in the target population is missing, censored, or coarsened due to factors related to the exposure, the outcome, or their consequences. We extend existing graphical criteria to address selection bias induced by missing outcome data by leveraging post-exposure variables. We introduce the Sequential Adjustment Criteria (SAC), which support recovering causal effects through sequential regressions. A refined estimator is further developed by applying Targeted Minimum-Loss Estimation (TMLE). Under certain regularity conditions, this estimator is multiply-robust, ensuring consistency even in scenarios where the Inverse Probability Weighting (IPW) and the sequential regressions approaches fall short. A simulation exercise featuring various toy scenarios compares the relative bias and robustness of the two proposed solutions against other estimators. As a motivating application case, we study the effects of pharmacological treatment for Attention-Deficit/Hyperactivity Disorder (ADHD) upon the scores obtained by diagnosed Norwegian schoolchildren in national tests using observational data ($n=9\,352$). Our findings support the accumulated clinical evidence affirming a positive but small effect of stimulant medication on school performance. A small positive selection bias was identified, indicating that the treatment effect may be even more modest for those exempted or abstained from the tests.

相關內容

Conformal inference is a popular tool for constructing prediction intervals (PI). We consider here the scenario of post-selection/selective conformal inference, that is PIs are reported only for individuals selected from an unlabeled test data. To account for multiplicity, we develop a general split conformal framework to construct selective PIs with the false coverage-statement rate (FCR) control. We first investigate the Benjamini and Yekutieli (2005)'s FCR-adjusted method in the present setting, and show that it is able to achieve FCR control but yields uniformly inflated PIs. We then propose a novel solution to the problem, named as Selective COnditional conformal Predictions (SCOP), which entails performing selection procedures on both calibration set and test set and construct marginal conformal PIs on the selected sets by the aid of conditional empirical distribution obtained by the calibration set. Under a unified framework and exchangeable assumptions, we show that the SCOP can exactly control the FCR. More importantly, we provide non-asymptotic miscoverage bounds for a general class of selection procedures beyond exchangeablity and discuss the conditions under which the SCOP is able to control the FCR. As special cases, the SCOP with quantile-based selection or conformal p-values-based multiple testing procedures enjoys valid coverage guarantee under mild conditions. Numerical results confirm the effectiveness and robustness of SCOP in FCR control and show that it achieves more narrowed PIs over existing methods in many settings.

Bayesian inference for complex models with an intractable likelihood can be tackled using algorithms performing many calls to computer simulators. These approaches are collectively known as "simulation-based inference" (SBI). Recent SBI methods have made use of neural networks (NN) to provide approximate, yet expressive constructs for the unavailable likelihood function and the posterior distribution. However, they do not generally achieve an optimal trade-off between accuracy and computational demand. In this work, we propose an alternative that provides both approximations to the likelihood and the posterior distribution, using structured mixtures of probability distributions. Our approach produces accurate posterior inference when compared to state-of-the-art NN-based SBI methods, while exhibiting a much smaller computational footprint. We illustrate our results on several benchmark models from the SBI literature.

We establish a coding theorem and a matching converse theorem for separate encodings and joint decoding of individual sequences using finite-state machines. The achievable rate region is characterized in terms of the Lempel-Ziv (LZ) complexities, the conditional LZ complexities and the joint LZ complexity of the two source sequences. An important feature that is needed to this end, which may be interesting on its own right, is a certain asymptotic form of a chain rule for LZ complexities, which we establish in this work. The main emphasis in the achievability scheme is on the universal decoder and its properties. We then show that the achievable rate region is universally attainable by a modified version of Draper's universal incremental Slepian-Wolf (SW) coding scheme, provided that there exists a low-rate reliable feedback link.

We consider a simple mean reverting diffusion process, with piecewise constant drift and diffusion coefficients, discontinuous at a fixed threshold. We discuss estimation of drift and diffusion parameters from discrete observations of the process, with a generalized moment estimator and a maximum likelihood estimator. We develop the asymptotic theory of the estimators when the time horizon of the observations goes to infinity, considering both cases of a fixed time lag (low frequency) and a vanishing time lag (high frequency) between consecutive observations. In the setting of low frequency observations and infinite time horizon we also study the convergence of three local time estimators, that are already known to converge to the local time in the setting of high frequency observations and fixed time horizon. We find that these estimators can behave differently, depending on the assumptions on the time lag between observations.

In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.

Charts, figures, and text derived from data play an important role in decision making, from data-driven policy development to day-to-day choices informed by online articles. Making sense of, or fact-checking, outputs means understanding how they relate to the underlying data. Even for domain experts with access to the source code and data sets, this poses a significant challenge. In this paper we introduce a new program analysis framework which supports interactive exploration of fine-grained I/O relationships directly through computed outputs, making use of dynamic dependence graphs. Our main contribution is a novel notion in data provenance which we call related inputs, a relation of mutual relevance or "cognacy" which arises between inputs when they contribute to common features of the output. Queries of this form allow readers to ask questions like "What outputs use this data element, and what other data elements are used along with it?". We show how Jonsson and Tarski's concept of conjugate operators on Boolean algebras appropriately characterises the notion of cognacy in a dependence graph, and give a procedure for computing related inputs over such a graph.

Treatment-covariate interaction tests are commonly applied by researchers to examine whether the treatment effect varies across patient subgroups defined by baseline characteristics. The objective of this study is to explore treatment-covariate interaction tests involving covariate-adaptive randomization. Without assuming a parametric data generating model, we investigate usual interaction tests and observe that they tend to be conservative: specifically, their limiting rejection probabilities under the null hypothesis do not exceed the nominal level and are typically strictly lower than it. To address this problem, we propose modifications to the usual tests to obtain corresponding valid tests. Moreover, we introduce a novel class of stratified-adjusted interaction tests that are simple, more powerful than the usual and modified tests, and broadly applicable to most covariate-adaptive randomization methods. The results are general to encompass two types of interaction tests: one involving stratification covariates and the other involving additional covariates that are not used for randomization. Our study clarifies the application of interaction tests in clinical trials and offers valuable tools for revealing treatment heterogeneity, crucial for advancing personalized medicine.

The sparsity-ranked lasso (SRL) has been developed for model selection and estimation in the presence of interactions and polynomials. The main tenet of the SRL is that an algorithm should be more skeptical of higher-order polynomials and interactions *a priori* compared to main effects, and hence the inclusion of these more complex terms should require a higher level of evidence. In time series, the same idea of ranked prior skepticism can be applied to the possibly seasonal autoregressive (AR) structure of the series during the model fitting process, becoming especially useful in settings with uncertain or multiple modes of seasonality. The SRL can naturally incorporate exogenous variables, with streamlined options for inference and/or feature selection. The fitting process is quick even for large series with a high-dimensional feature set. In this work, we discuss both the formulation of this procedure and the software we have developed for its implementation via the **fastTS** R package. We explore the performance of our SRL-based approach in a novel application involving the autoregressive modeling of hourly emergency room arrivals at the University of Iowa Hospitals and Clinics. We find that the SRL is considerably faster than its competitors, while producing more accurate predictions.

To date, most methods for simulating conditioned diffusions are limited to the Euclidean setting. The conditioned process can be constructed using a change of measure known as Doob's $h$-transform. The specific type of conditioning depends on a function $h$ which is typically unknown in closed form. To resolve this, we extend the notion of guided processes to a manifold $M$, where one replaces $h$ by a function based on the heat kernel on $M$. We consider the case of a Brownian motion with drift, constructed using the frame bundle of $M$, conditioned to hit a point $x_T$ at time $T$. We prove equivalence of the laws of the conditioned process and the guided process with a tractable Radon-Nikodym derivative. Subsequently, we show how one can obtain guided processes on any manifold $N$ that is diffeomorphic to $M$ without assuming knowledge of the heat kernel on $N$. We illustrate our results with numerical simulations and an example of parameter estimation where a diffusion process on the torus is observed discretely in time.

This paper concerns an expansion of first-order Belnap-Dunn logic whose connectives and quantifiers are all familiar from classical logic. The language and logical consequence relation of the logic are defined, a proof system for the defined logic is presented, and the soundness and completeness of the presented proof system is established. The close relationship between the logical consequence relations of the defined logic and the version of classical logic with the same language is illustrated by the minor differences between the presented proof system and a sound and complete proof system for the version of classical logic with the same language. Moreover, fifteen classical laws of logical equivalence are given by which the logical equivalence relation of the defined logic distinguishes itself from the logical equivalence relation of many logics that are closely related at first glance.

北京阿比特科技有限公司