Deep neural networks (DNNs) are recently shown to be vulnerable to backdoor attacks, where attackers embed hidden backdoors in the DNN model by injecting a few poisoned examples into the training dataset. While extensive efforts have been made to detect and remove backdoors from backdoored DNNs, it is still not clear whether a backdoor-free clean model can be directly obtained from poisoned datasets. In this paper, we first construct a causal graph to model the generation process of poisoned data and find that the backdoor attack acts as the confounder, which brings spurious associations between the input images and target labels, making the model predictions less reliable. Inspired by the causal understanding, we propose the Causality-inspired Backdoor Defense (CBD), to learn deconfounded representations for reliable classification. Specifically, a backdoored model is intentionally trained to capture the confounding effects. The other clean model dedicates to capturing the desired causal effects by minimizing the mutual information with the confounding representations from the backdoored model and employing a sample-wise re-weighting scheme. Extensive experiments on multiple benchmark datasets against 6 state-of-the-art attacks verify that our proposed defense method is effective in reducing backdoor threats while maintaining high accuracy in predicting benign samples. Further analysis shows that CBD can also resist potential adaptive attacks. The code is available at \url{//github.com/zaixizhang/CBD}.
Backdoor learning has become an emerging research area towards building a trustworthy machine learning system. While a lot of works have studied the hidden danger of backdoor attacks in image or text classification, there is a limited understanding of the model's robustness on backdoor attacks when the output space is infinite and discrete. In this paper, we study a much more challenging problem of testing whether sequence-to-sequence (seq2seq) models are vulnerable to backdoor attacks. Specifically, we find by only injecting 0.2\% samples of the dataset, we can cause the seq2seq model to generate the designated keyword and even the whole sentence. Furthermore, we utilize Byte Pair Encoding (BPE) to create multiple new triggers, which brings new challenges to backdoor detection since these backdoors are not static. Extensive experiments on machine translation and text summarization have been conducted to show our proposed methods could achieve over 90\% attack success rate on multiple datasets and models.
Textual backdoor attack, as a novel attack model, has been shown to be effective in adding a backdoor to the model during training. Defending against such backdoor attacks has become urgent and important. In this paper, we propose AttDef, an efficient attribution-based pipeline to defend against two insertion-based poisoning attacks, BadNL and InSent. Specifically, we regard the tokens with larger attribution scores as potential triggers since larger attribution words contribute more to the false prediction results and therefore are more likely to be poison triggers. Additionally, we further utilize an external pre-trained language model to distinguish whether input is poisoned or not. We show that our proposed method can generalize sufficiently well in two common attack scenarios (poisoning training data and testing data), which consistently improves previous methods. For instance, AttDef can successfully mitigate both attacks with an average accuracy of 79.97% (56.59% up) and 48.34% (3.99% up) under pre-training and post-training attack defense respectively, achieving the new state-of-the-art performance on prediction recovery over four benchmark datasets.
Targeted model poisoning attacks pose a significant threat to federated learning systems. Recent studies show that edge-case targeted attacks, which target a small fraction of the input space are nearly impossible to counter using existing fixed defense strategies. In this paper, we strive to design a learned-defense strategy against such attacks, using a small defense dataset. The defense dataset can be collected by the central authority of the federated learning task, and should contain a mix of poisoned and clean examples. The proposed framework, LearnDefend, estimates the probability of a client update being malicious. The examples in defense dataset need not be pre-marked as poisoned or clean. We also learn a poisoned data detector model which can be used to mark each example in the defense dataset as clean or poisoned. We estimate the poisoned data detector and the client importance models in a coupled optimization approach. Our experiments demonstrate that LearnDefend is capable of defending against state-of-the-art attacks where existing fixed defense strategies fail. We also show that LearnDefend is robust to size and noise in the marking of clean examples in the defense dataset.
Federated learning (FL) attempts to train a global model by aggregating local models from distributed devices under the coordination of a central server. However, the existence of a large number of heterogeneous devices makes FL vulnerable to various attacks, especially the stealthy backdoor attack. Backdoor attack aims to trick a neural network to misclassify data to a target label by injecting specific triggers while keeping correct predictions on original training data. Existing works focus on client-side attacks which try to poison the global model by modifying the local datasets. In this work, we propose a new attack model for FL, namely Data-Agnostic Backdoor attack at the Server (DABS), where the server directly modifies the global model to backdoor an FL system. Extensive simulation results show that this attack scheme achieves a higher attack success rate compared with baseline methods while maintaining normal accuracy on the clean data.
Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.
To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction and pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that directly works at the level of pixels (or local features) by taking into account the correspondence between local features. We present dense contrastive learning, which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images. Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only <1% slower), but demonstrates consistently superior performance when transferring to downstream dense prediction tasks including object detection, semantic segmentation and instance segmentation; and outperforms the state-of-the-art methods by a large margin. Specifically, over the strong MoCo-v2 baseline, our method achieves significant improvements of 2.0% AP on PASCAL VOC object detection, 1.1% AP on COCO object detection, 0.9% AP on COCO instance segmentation, 3.0% mIoU on PASCAL VOC semantic segmentation and 1.8% mIoU on Cityscapes semantic segmentation. Code is available at: //git.io/AdelaiDet
We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that the generated samples for unseen-classes are often out of the true distribution, which causes severe recognition rate imbalance between the seen-class (high) and unseen-class (low). We show that the key reason is that the generation is not Counterfactual Faithful, and thus we propose a faithful one, whose generation is from the sample-specific counterfactual question: What would the sample look like, if we set its class attribute to a certain class, while keeping its sample attribute unchanged? Thanks to the faithfulness, we can apply the Consistency Rule to perform unseen/seen binary classification, by asking: Would its counterfactual still look like itself? If ``yes'', the sample is from a certain class, and ``no'' otherwise. Through extensive experiments on ZSL and OSR, we demonstrate that our framework effectively mitigates the seen/unseen imbalance and hence significantly improves the overall performance. Note that this framework is orthogonal to existing methods, thus, it can serve as a new baseline to evaluate how ZSL/OSR models generalize. Codes are available at //github.com/yue-zhongqi/gcm-cf.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Backdoor attack could happen when the training process is not fully controlled by the user, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, its systematic review, however, remains blank. In this paper, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and the relevant fields ($i.e.,$ adversarial attack and data poisoning), and summarize the benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works.
Generative Adversarial Networks (GANs) can produce images of surprising complexity and realism, but are generally modeled to sample from a single latent source ignoring the explicit spatial interaction between multiple entities that could be present in a scene. Capturing such complex interactions between different objects in the world, including their relative scaling, spatial layout, occlusion, or viewpoint transformation is a challenging problem. In this work, we propose to model object composition in a GAN framework as a self-consistent composition-decomposition network. Our model is conditioned on the object images from their marginal distributions to generate a realistic image from their joint distribution by explicitly learning the possible interactions. We evaluate our model through qualitative experiments and user evaluations in both the scenarios when either paired or unpaired examples for the individual object images and the joint scenes are given during training. Our results reveal that the learned model captures potential interactions between the two object domains given as input to output new instances of composed scene at test time in a reasonable fashion.