In this paper, we develop an oscillation free local discontinuous Galerkin (OFLDG) method for solving nonlinear degenerate parabolic equations. Following the idea of our recent work [J. Lu, Y. Liu, and C.-W. Shu, SIAM J. Numer. Anal. 59(2021), pp. 1299-1324.], we add the damping terms to the LDG scheme to control the spurious oscillations when solutions have a large gradient. The $L^2$-stability and optimal priori error estimates for the semi-discrete scheme are established. The numerical experiments demonstrate that the proposed method maintains the high-order accuracy and controls the spurious oscillations well.
This research introduces a new method for the transition from partial to ordinary differential equations that is based on the Kolmogorov superposition theorem. In this paper, we discuss the numerical implementation of the Kolmogorov theorem and propose an approach that allows us to apply the theorem to represent partial derivatives of multivariate function as a combination of ordinary derivatives of univariate functions. We tested the method by running a numerical experiment with the Poisson equation. As a result, we managed to get a system of ordinary differential equations whose solution coincides with a solution of the initial partial differential equation.
We construct a space-time parallel method for solving parabolic partial differential equations by coupling the Parareal algorithm in time with overlapping domain decomposition in space. Reformulating the original Parareal algorithm as a variational method and implementing a finite element discretization in space enables an adjoint-based a posteriori error analysis to be performed. Through an appropriate choice of adjoint problems and residuals the error analysis distinguishes between errors arising due to the temporal and spatial discretizations, as well as between the errors arising due to incomplete Parareal iterations and incomplete iterations of the domain decomposition solver. We first develop an error analysis for the Parareal method applied to parabolic partial differential equations, and then refine this analysis to the case where the associated spatial problems are solved using overlapping domain decomposition. These constitute our Time Parallel Algorithm (TPA) and Space-Time Parallel Algorithm (STPA) respectively. Numerical experiments demonstrate the accuracy of the estimator for both algorithms and the iterations between distinct components of the error.
Model Predictive Control (MPC) is a well-established approach to solve infinite horizon optimal control problems. Since optimization over an infinite time horizon is generally infeasible, MPC determines a suboptimal feedback control by repeatedly solving finite time optimal control problems. Although MPC has been successfully used in many applications, applying MPC to large-scale systems -- arising, e.g., through discretization of partial differential equations -- requires the solution of high-dimensional optimal control problems and thus poses immense computational effort. We consider systems governed by parametrized parabolic partial differential equations and employ the reduced basis (RB) method as a low-dimensional surrogate model for the finite time optimal control problem. The reduced order optimal control serves as feedback control for the original large-scale system. We analyze the proposed RB-MPC approach by first developing a posteriori error bounds for the errors in the optimal control and associated cost functional. These bounds can be evaluated efficiently in an offline-online computational procedure and allow us to guarantee asymptotic stability of the closed-loop system using the RB-MPC approach. We also propose an adaptive strategy to choose the prediction horizon of the finite time optimal control problem. Numerical results are presented to illustrate the theoretical properties of our approach.
We study the discretization of a linear evolution partial differential equation when its Green function is known. We provide error estimates both for the spatial approximation and for the time stepping approximation. We show that, in fact, an approximation of the Green function is almost as good as the Green function itself. For suitable time-dependent parabolic equations, we explain how to obtain good, explicit approximations of the Green function using the Dyson-Taylor commutator method (DTCM) that we developed in J. Math. Phys. (2010). This approximation for short time, when combined with a bootstrap argument, gives an approximate solution on any fixed time interval within any prescribed tolerance.
Stochastic Galerkin formulations of the two-dimensional shallow water systems parameterized with random variables may lose hyperbolicity, and hence change the nature of the original model. In this work, we present a hyperbolicity-preserving stochastic Galerkin formulation by carefully selecting the polynomial chaos approximations to the nonlinear terms in the shallow water equations. We derive a sufficient condition to preserve the hyperbolicity of the stochastic Galerkin system which requires only a finite collection of positivity conditions on the stochastic water height at selected quadrature points in parameter space. Based on our theoretical results for the stochastic Galerkin formulation, we develop a corresponding well-balanced hyperbolicity-preserving central-upwind scheme. We demonstrate the accuracy and the robustness of the new scheme on several challenging numerical tests.
Coupled hydro-mechanical processes are of great importance to numerous engineering systems, e.g., hydraulic fracturing, geothermal energy, and carbon sequestration. Fluid flow in fractures is modeled after a Poiseuille law that relates the conductivity to the aperture by a cubic relation. Newton's method is commonly employed to solve the resulting discrete, nonlinear algebraic systems. It is demonstrated, however, that Newton's method will likely converge to nonphysical numerical solutions, resulting in estimates with a negative fracture aperture. A Quasi-Newton approach is developed to ensure global convergence to the physical solution. A fixed-point stability analysis demonstrates that both physical and nonphysical solutions are stable for Newton's method, whereas only physical solutions are stable for the proposed Quasi-Newton method. Additionally, it is also demonstrated that the Quasi-Newton method offers a contraction mapping along the iteration path. Numerical examples of fluid-driven fracture propagation demonstrate that the proposed solution method results in robust and computationally efficient performance.
We consider flux-corrected finite element discretizations of 3D convection-dominated transport problems and assess the computational efficiency of algorithms based on such approximations. The methods under investigation include flux-corrected transport schemes and monolithic limiters. We discretize in space using a continuous Galerkin method and $\mathbb{P}_1$ or $\mathbb{Q}_1$ finite elements. Time integration is performed using the Crank-Nicolson method or an explicit strong stability preserving Runge-Kutta method. Nonlinear systems are solved using a fixed-point iteration method, which requires solution of large linear systems at each iteration or time step. The great variety of options in the choice of discretization methods and solver components calls for a dedicated comparative study of existing approaches. To perform such a study, we define new 3D test problems for time-dependent and stationary convection-diffusion-reaction equations. The results of our numerical experiments illustrate how the limiting technique, time discretization and solver impact on the overall performance.
In the paper, an approach for the numerical solution of stationary nonlinear Navier-Stokes equations in rotation and convective forms in a polygonal domain containing one reentrant corner on its boundary, that is, a corner greater than ${\pi}$ is considered. The method allows us to obtain the 1st order of convergence of the approximate solution to the exact one with respect to the grid step h, regardless of the reentrant corner value.
The primary emphasis of this work is the development of a finite element based space-time discretization for solving the stochastic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations of incompressible fluid turbulence with multiplicative random forcing, under nonperiodic boundary conditions within a bounded polygonal (or polyhedral) domain of R^d , d $\in$ {2, 3}. The convergence analysis of a fully discretized numerical scheme is investigated and split into two cases according to the spacial scale $\alpha$, namely we first assume $\alpha$ to be controlled by the step size of the space discretization so that it vanishes when passing to the limit, then we provide an alternative study when $\alpha$ is fixed. A preparatory analysis of uniform estimates in both $\alpha$ and discretization parameters is carried out. Starting out from the stochastic LANS-$\alpha$ model, we achieve convergence toward the continuous strong solutions of the stochastic Navier-Stokes equations in 2D when $\alpha$ vanishes at the limit. Additionally, convergence toward the continuous strong solutions of the stochastic LANS-$\alpha$ model is accomplished if $\alpha$ is fixed.
In this paper we present a finite element analysis for a Dirichlet boundary control problem governed by the Stokes equation. The Dirichlet control is considered in a convex closed subset of the energy space $\mathbf{H}^1(\Omega).$ Most of the previous works on the Stokes Dirichlet boundary control problem deals with either tangential control or the case where the flux of the control is zero. This choice of the control is very particular and their choice of the formulation leads to the control with limited regularity. To overcome this difficulty, we introduce the Stokes problem with outflow condition and the control acts on the Dirichlet boundary only hence our control is more general and it has both the tangential and normal components. We prove well-posedness and discuss on the regularity of the control problem. The first-order optimality condition for the control leads to a Signorini problem. We develop a two-level finite element discretization by using $\mathbf{P}_1$ elements(on the fine mesh) for the velocity and the control variable and $P_0$ elements (on the coarse mesh) for the pressure variable. The standard energy error analysis gives $\frac{1}{2}+\frac{\delta}{2}$ order of convergence when the control is in $\mathbf{H}^{\frac{3}{2}+\delta}(\Omega)$ space. Here we have improved it to $\frac{1}{2}+\delta,$ which is optimal. Also, when the control lies in less regular space we derived optimal order of convergence up to the regularity. The theoretical results are corroborated by a variety of numerical tests.