亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we present a novel method, $\textit{Knowledge Persistence}$ ($\mathcal{KP}$), for faster evaluation of Knowledge Graph (KG) completion approaches. Current ranking-based evaluation is quadratic in the size of the KG, leading to long evaluation times and consequently a high carbon footprint. $\mathcal{KP}$ addresses this by representing the topology of the KG completion methods through the lens of topological data analysis, concretely using persistent homology. The characteristics of persistent homology allow $\mathcal{KP}$ to evaluate the quality of the KG completion looking only at a fraction of the data. Experimental results on standard datasets show that the proposed metric is highly correlated with ranking metrics (Hits@N, MR, MRR). Performance evaluation shows that $\mathcal{KP}$ is computationally efficient: In some cases, the evaluation time (validation+test) of a KG completion method has been reduced from 18 hours (using Hits@10) to 27 seconds (using $\mathcal{KP}$), and on average (across methods & data) reduces the evaluation time (validation+test) by $\approx$ $\textbf{99.96}\%$.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

Deep hashing has been extensively applied to massive image retrieval due to its efficiency and effectiveness. Recently, several adversarial attacks have been presented to reveal the vulnerability of deep hashing models against adversarial examples. However, existing attack methods suffer from degraded performance or inefficiency because they underutilize the semantic relations between original samples or spend a lot of time learning these relations with a deep neural network. In this paper, we propose a novel Pharos-guided Attack, dubbed PgA, to evaluate the adversarial robustness of deep hashing networks reliably and efficiently. Specifically, we design pharos code to represent the semantics of the benign image, which preserves the similarity to semantically relevant samples and dissimilarity to irrelevant ones. It is proven that we can quickly calculate the pharos code via a simple math formula. Accordingly, PgA can directly conduct a reliable and efficient attack on deep hashing-based retrieval by maximizing the similarity between the hash code of the adversarial example and the pharos code. Extensive experiments on the benchmark datasets verify that the proposed algorithm outperforms the prior state-of-the-arts in both attack strength and speed.

Deep neural networks are very successful on many vision tasks, but hard to interpret due to their black box nature. To overcome this, various post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions. Evaluating such methods is challenging since no ground truth attributions exist. We thus propose three novel evaluation schemes to more reliably measure the faithfulness of those methods, to make comparisons between them more fair, and to make visual inspection more systematic. To address faithfulness, we propose a novel evaluation setting (DiFull) in which we carefully control which parts of the input can influence the output in order to distinguish possible from impossible attributions. To address fairness, we note that different methods are applied at different layers, which skews any comparison, and so evaluate all methods on the same layers (ML-Att) and discuss how this impacts their performance on quantitative metrics. For more systematic visualizations, we propose a scheme (AggAtt) to qualitatively evaluate the methods on complete datasets. We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods over a wide range of models. Finally, we propose a post-processing smoothing step that significantly improves the performance of some attribution methods, and discuss its applicability.

Age of information (AoI) is a powerful metric to evaluate the freshness of information, where minimization of average statistics, such as the average AoI and average peak AoI, currently prevails in guiding freshness optimization for related applications. Although minimizing the statistics does improve the received information's freshness for status update systems in the sense of average, the time-varying fading characteristics of wireless channels often cause uncertain yet frequent age violations. The recently-proposed statistical AoI metric can better characterize more features of AoI dynamics, which evaluates the achievable minimum peak AoI under the certain constraint on age violation probability. In this paper, we study the statistical AoI minimization problem for status update systems over multi-state fading channels, which can effectively upper-bound the AoI violation probability but introduce the prohibitively-high computing complexity. To resolve this issue, we tackle the problem with a two-fold approach. For a small AoI exponent, the problem is approximated via a fractional programming problem. For a large AoI exponent, the problem is converted to a convex problem. Solving the two problems respectively, we derive the near-optimal sampling interval for diverse status update systems. Insightful observations are obtained on how sampling interval shall be tuned as a decreasing function of channel state information (CSI). Surprisingly, for the extremely stringent AoI requirement, the sampling interval converges to a constant regardless of CSI's variation. Numerical results verify effectiveness as well as superiority of our proposed scheme.

Structured knowledge bases (KBs) are a foundation of many intelligent applications, yet are notoriously incomplete. Language models (LMs) have recently been proposed for unsupervised knowledge base completion (KBC), yet, despite encouraging initial results, questions regarding their suitability remain open. Existing evaluations often fall short because they only evaluate on popular subjects, or sample already existing facts from KBs. In this work, we introduce a novel, more challenging benchmark dataset, and a methodology tailored for a realistic assessment of the KBC potential of LMs. For automated assessment, we curate a dataset called WD-KNOWN, which provides an unbiased random sample of Wikidata, containing over 3.9 million facts. In a second step, we perform a human evaluation on predictions that are not yet in the KB, as only this provides real insights into the added value over existing KBs. Our key finding is that biases in dataset conception of previous benchmarks lead to a systematic overestimate of LM performance for KBC. However, our results also reveal strong areas of LMs. We could, for example, perform a significant completion of Wikidata on the relations nativeLanguage, by a factor of ~21 (from 260k to 5.8M) at 82% precision, usedLanguage, by a factor of ~2.1 (from 2.1M to 6.6M) at 82% precision, and citizenOf by a factor of ~0.3 (from 4.2M to 5.3M) at 90% precision. Moreover, we find that LMs possess surprisingly strong generalization capabilities: even on relations where most facts were not directly observed in LM training, prediction quality can be high.

At the same time that artificial intelligence (AI) and machine learning are becoming central to human life, their potential harms become more vivid. In the presence of such drawbacks, a critical question to address before using individual predictions for critical decision-making is whether those are reliable. Aligned with recent efforts on data-centric AI, this paper proposes a novel approach, complementary to the existing work on trustworthy AI, to address the reliability question through the lens of data. Specifically, it associates data sets with distrust quantification that specifies their scope of use for individual predictions. It develops novel algorithms for efficient and effective computation of distrust values. The proposed algorithms learn the necessary components of the measures from the data itself and are sublinear, which makes them scalable to very large and multi-dimensional settings. Furthermore, an estimator is designed to enable no-data access during the query time. Besides theoretical analyses, the algorithms are evaluated experimentally, using multiple real and synthetic data sets and different tasks. The experiment results reflect a consistent correlation between distrust values and model performance. This highlights the necessity of dismissing prediction outcomes for cases with high distrust values, at least for critical decisions.

With well-selected data, homogeneous diffusion inpainting can reconstruct images from sparse data with high quality. While 4K colour images of size 3840 x 2160 can already be inpainted in real time, optimising the known data for applications like image compression remains challenging: Widely used stochastic strategies can take days for a single 4K image. Recently, a first neural approach for this so-called mask optimisation problem offered high speed and good quality for small images. It trains a mask generation network with the help of a neural inpainting surrogate. However, these mask networks can only output masks for the resolution and mask density they were trained for. We solve these problems and enable mask optimisation for high-resolution images through a neuroexplicit coarse-to-fine strategy. Additionally, we improve the training and interpretability of mask networks by including a numerical inpainting solver directly into the network. This allows to generate masks for 4K images in around 0.6 seconds while exceeding the quality of stochastic methods on practically relevant densities. Compared to popular existing approaches, this is an acceleration of up to four orders of magnitude.

Interleaving is an online evaluation approach for information retrieval systems that compares the effectiveness of ranking functions in interpreting the users' implicit feedback. Previous work such as Hofmann et al (2011) has evaluated the most promising interleaved methods at the time, on uniform distributions of queries. In the real world, ordinarily, there is an unbalanced distribution of repeated queries that follows a long-tailed users' search demand curve. The more a query is executed, by different users (or in different sessions), the higher the probability of collecting implicit feedback (interactions/clicks) on the related search results. This paper first aims to replicate the Team Draft Interleaving accuracy evaluation on uniform query distributions and then focuses on assessing how this method generalizes to long-tailed real-world scenarios. The reproducibility work raised interesting considerations on how the winning ranking function for each query should impact the overall winner for the entire evaluation. Based on what was observed, we propose that not all the queries should contribute to the final decision in equal proportion. As a result of these insights, we designed two variations of the $\Delta_{AB}$ score winner estimator that assign to each query a credit based on statistical hypothesis testing. To replicate, reproduce and extend the original work, we have developed from scratch a system that simulates a search engine and users' interactions from datasets from the industry. Our experiments confirm our intuition and show that our methods are promising in terms of accuracy, sensitivity, and robustness to noise.

Unsupervised machine learning lacks ground truth by definition. This poses a major difficulty when designing metrics to evaluate the performance of such algorithms. In sharp contrast with supervised learning, for which plenty of quality metrics have been studied in the literature, in the field of dimensionality reduction only a few over-simplistic metrics has been proposed. In this work, we aim to introduce the first highly non-trivial dimensionality reduction performance metric. This metric is based on the sectional curvature behaviour arising from Riemannian geometry. To test its feasibility, this metric has been used to evaluate the performance of the most commonly used dimension reduction algorithms in the state of the art. Furthermore, to make the evaluation of the algorithms robust and representative, using curvature properties of planar curves, a new parameterized problem instance generator has been constructed in the form of a function generator. Experimental results are consistent with what could be expected based on the design and characteristics of the evaluated algorithms and the features of the data instances used to feed the method.

In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.

Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.

北京阿比特科技有限公司