亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reducing communication overhead in federated learning (FL) is challenging but crucial for large-scale distributed privacy-preserving machine learning. While methods utilizing sparsification or others can largely lower the communication overhead, the convergence rate is also greatly compromised. In this paper, we propose a novel method, named single-step synthetic features compressor (3SFC), to achieve communication-efficient FL by directly constructing a tiny synthetic dataset based on raw gradients. Thus, 3SFC can achieve an extremely low compression rate when the constructed dataset contains only one data sample. Moreover, 3SFC's compressing phase utilizes a similarity-based objective function so that it can be optimized with just one step, thereby considerably improving its performance and robustness. In addition, to minimize the compressing error, error feedback (EF) is also incorporated into 3SFC. Experiments on multiple datasets and models suggest that 3SFC owns significantly better convergence rates compared to competing methods with lower compression rates (up to 0.02%). Furthermore, ablation studies and visualizations show that 3SFC can carry more information than competing methods for every communication round, further validating its effectiveness.

相關內容

Most learning-based image compression methods lack efficiency for high image quality due to their non-invertible design. The decoding function of the frequently applied compressive autoencoder architecture is only an approximated inverse of the encoding transform. This issue can be resolved by using invertible latent variable models, which allow a perfect reconstruction if no quantization is performed. Furthermore, many traditional image and video coders apply dynamic block partitioning to vary the compression of certain image regions depending on their content. Inspired by this approach, hierarchical latent spaces have been applied to learning-based compression networks. In this paper, we present a novel concept, which adapts the hierarchical latent space for augmented normalizing flows, an invertible latent variable model. Our best performing model achieved average rate savings of more than 7% over comparable single-scale models.

Federated learning involves training statistical models over edge devices such as mobile phones such that the training data is kept local. Federated Learning (FL) can serve as an ideal candidate for training spatial temporal models that rely on heterogeneous and potentially massive numbers of participants while preserving the privacy of highly sensitive location data. However, there are unique challenges involved with transitioning existing spatial temporal models to decentralized learning. In this survey paper, we review the existing literature that has proposed FL-based models for predicting human mobility, traffic prediction, community detection, location-based recommendation systems, and other spatial-temporal tasks. We describe the metrics and datasets these works have been using and create a baseline of these approaches in comparison to the centralized settings. Finally, we discuss the challenges of applying spatial-temporal models in a decentralized setting and by highlighting the gaps in the literature we provide a road map and opportunities for the research community.

Federated noisy label learning (FNLL) is emerging as a promising tool for privacy-preserving multi-source decentralized learning. Existing research, relying on the assumption of class-balanced global data, might be incapable to model complicated label noise, especially in medical scenarios. In this paper, we first formulate a new and more realistic federated label noise problem where global data is class-imbalanced and label noise is heterogeneous, and then propose a two-stage framework named FedNoRo for noise-robust federated learning. Specifically, in the first stage of FedNoRo, per-class loss indicators followed by Gaussian Mixture Model are deployed for noisy client identification. In the second stage, knowledge distillation and a distance-aware aggregation function are jointly adopted for noise-robust federated model updating. Experimental results on the widely-used ICH and ISIC2019 datasets demonstrate the superiority of FedNoRo against the state-of-the-art FNLL methods for addressing class imbalance and label noise heterogeneity in real-world FL scenarios.

We propose a novel hierarchical Bayesian approach to Federated Learning (FL), where our model reasonably describes the generative process of clients' local data via hierarchical Bayesian modeling: constituting random variables of local models for clients that are governed by a higher-level global variate. Interestingly, the variational inference in our Bayesian model leads to an optimisation problem whose block-coordinate descent solution becomes a distributed algorithm that is separable over clients and allows them not to reveal their own private data at all, thus fully compatible with FL. We also highlight that our block-coordinate algorithm has particular forms that subsume the well-known FL algorithms including Fed-Avg and Fed-Prox as special cases. Beyond introducing novel modeling and derivations, we also offer convergence analysis showing that our block-coordinate FL algorithm converges to an (local) optimum of the objective at the rate of $O(1/\sqrt{t})$, the same rate as regular (centralised) SGD, as well as the generalisation error analysis where we prove that the test error of our model on unseen data is guaranteed to vanish as we increase the training data size, thus asymptotically optimal.

The demand for intelligent industries and smart services based on big data is rising rapidly with the increasing digitization and intelligence of the modern world. This survey comprehensively reviews Blockchained Federated Learning (BlockFL) that joins the benefits of both Blockchain and Federated Learning to provide a secure and efficient solution for the demand. We compare the existing BlockFL models in four Internet-of-Things (IoT) application scenarios: Personal IoT (PIoT), Industrial IoT (IIoT), Internet of Vehicles (IoV), and Internet of Health Things (IoHT), with a focus on security and privacy, trust and reliability, efficiency, and data heterogeneity. Our analysis shows that the features of decentralization and transparency make BlockFL a secure and effective solution for distributed model training, while the overhead and compatibility still need further study. It also reveals the unique challenges of each domain presents unique challenges, e.g., the requirement of accommodating dynamic environments in IoV and the high demands of identity and permission management in IoHT, in addition to some common challenges identified, such as privacy, resource constraints, and data heterogeneity. Furthermore, we examine the existing technologies that can benefit BlockFL, thereby helping researchers and practitioners to make informed decisions about the selection and development of BlockFL for various IoT application scenarios.

Conventional recommender systems are required to train the recommendation model using a centralized database. However, due to data privacy concerns, this is often impractical when multi-parties are involved in recommender system training. Federated learning appears as an excellent solution to the data isolation and privacy problem. Recently, Graph neural network (GNN) is becoming a promising approach for federated recommender systems. However, a key challenge is to conduct embedding propagation while preserving the privacy of the graph structure. Few studies have been conducted on the federated GNN-based recommender system. Our study proposes the first vertical federated GNN-based recommender system, called VerFedGNN. We design a framework to transmit: (i) the summation of neighbor embeddings using random projection, and (ii) gradients of public parameter perturbed by ternary quantization mechanism. Empirical studies show that VerFedGNN has competitive prediction accuracy with existing privacy preserving GNN frameworks while enhanced privacy protection for users' interaction information.

We tackle the problem of joint frequency and power allocation while emphasizing the generalization capability of a deep reinforcement learning model. Most of the existing methods solve reinforcement learning-based wireless problems for a specific pre-determined wireless network scenario. The performance of a trained agent tends to be very specific to the network and deteriorates when used in a different network operating scenario (e.g., different in size, neighborhood, and mobility, among others). We demonstrate our approach to enhance training to enable a higher generalization capability during inference of the deployed model in a distributed multi-agent setting in a hostile jamming environment. With all these, we show the improved training and inference performance of the proposed methods when tested on previously unseen simulated wireless networks of different sizes and architectures. More importantly, to prove practical impact, the end-to-end solution was implemented on the embedded software-defined radio and validated using over-the-air evaluation.

Federated edge learning (FEEL) is a popular distributed learning framework for privacy-preserving at the edge, in which densely distributed edge devices periodically exchange model-updates with the server to complete the global model training. Due to limited bandwidth and uncertain wireless environment, FEEL may impose heavy burden to the current communication system. In addition, under the common FEEL framework, the server needs to wait for the slowest device to complete the update uploading before starting the aggregation process, leading to the straggler issue that causes prolonged communication time. In this paper, we propose to accelerate FEEL from two aspects: i.e., 1) performing data compression on the edge devices and 2) setting a deadline on the edge server to exclude the straggler devices. However, undesired gradient compression errors and transmission outage are introduced by the aforementioned operations respectively, affecting the convergence of FEEL as well. In view of these practical issues, we formulate a training time minimization problem, with the compression ratio and deadline to be optimized. To this end, an asymptotically unbiased aggregation scheme is first proposed to ensure zero optimality gap after convergence, and the impact of compression error and transmission outage on the overall training time are quantified through convergence analysis. Then, the formulated problem is solved in an alternating manner, based on which, the novel joint compression and deadline optimization (JCDO) algorithm is derived. Numerical experiments for different use cases in FEEL including image classification and autonomous driving show that the proposed method is nearly 30X faster than the vanilla FedAVG algorithm, and outperforms the state-of-the-art schemes.

Achieving resource efficiency while preserving end-user experience is non-trivial for cloud application operators. As cloud applications progressively adopt microservices, resource managers are faced with two distinct levels of system behavior: the end-to-end application latency and per-service resource usage. Translation between these two levels, however, is challenging because user requests traverse heterogeneous services that collectively (but unevenly) contribute to the end-to-end latency. This paper presents Autothrottle, a bi-level learning-assisted resource management framework for SLO-targeted microservices. It architecturally decouples mechanisms of application SLO feedback and service resource control, and bridges them with the notion of performance targets. This decoupling enables targeted control policies for these two mechanisms, where we combine lightweight heuristics and learning techniques. We evaluate Autothrottle on three microservice applications, with workload traces from production scenarios. Results show its superior CPU resource saving, up to 26.21% over the best-performing baseline, and up to 93.84% over all baselines.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

北京阿比特科技有限公司