The robustness of the Kalman filter to double talk and its rapid convergence make it a popular approach for addressing acoustic echo cancellation (AEC) challenges. However, the inability to model nonlinearity and the need to tune control parameters cast limitations on such adaptive filtering algorithms. In this paper, we integrate the frequency domain Kalman filter (FDKF) and deep neural networks (DNNs) into a hybrid method, called NeuralKalman, to leverage the advantages of deep learning and adaptive filtering algorithms. Specifically, we employ a DNN to estimate nonlinearly distorted far-end signals, a transition factor, and the nonlinear transition function in the state equation of the FDKF algorithm. Experimental results show that the proposed NeuralKalman improves the performance of FDKF significantly and outperforms strong baseline methods.
Zero-shot text-to-speech (TTS) has gained significant attention due to its powerful voice cloning capabilities, requiring only a few seconds of unseen speaker voice prompts. However, all previous work has been developed for cloud-based systems. Taking autoregressive models as an example, although these approaches achieve high-fidelity voice cloning, they fall short in terms of inference speed, model size, and robustness. Therefore, we propose MobileSpeech, which is a fast, lightweight, and robust zero-shot text-to-speech system based on mobile devices for the first time. Specifically: 1) leveraging discrete codec, we design a parallel speech mask decoder module called SMD, which incorporates hierarchical information from the speech codec and weight mechanisms across different codec layers during the generation process. Moreover, to bridge the gap between text and speech, we introduce a high-level probabilistic mask that simulates the progression of information flow from less to more during speech generation. 2) For speaker prompts, we extract fine-grained prompt duration from the prompt speech and incorporate text, prompt speech by cross attention in SMD. We demonstrate the effectiveness of MobileSpeech on multilingual datasets at different levels, achieving state-of-the-art results in terms of generating speed and speech quality. MobileSpeech achieves RTF of 0.09 on a single A100 GPU and we have successfully deployed MobileSpeech on mobile devices. Audio samples are available at \url{//mobilespeech.github.io/} .
Adapting state-of-the-art Large Language Models (LLMs) like GPT-4 and Gemini for specific tasks is challenging. Due to the opacity in their parameters, embeddings, and even output probabilities, existing fine-tuning adaptation methods are inapplicable. Consequently, adapting these black-box LLMs is only possible through their API services, raising concerns about transparency, privacy, and cost. To address these challenges, we introduce BBox-Adapter, a novel lightweight adapter for black-box LLMs. BBox-Adapter distinguishes target and source domain data by treating target data as positive and source data as negative. It employs a ranking-based Noise Contrastive Estimation (NCE) loss to promote the likelihood of target domain data while penalizing that of the source domain. Furthermore, it features an online adaptation mechanism, which incorporates real-time positive data sampling from ground-truth, human, or AI feedback, coupled with negative data from previous adaptations. Extensive experiments demonstrate BBox-Adapter's effectiveness and cost efficiency. It improves model performance by up to 6.77% across diverse tasks and domains, while reducing training and inference costs by 31.30x and 1.84x, respectively.
Effective Receptive field (ERF) plays an important role in transform coding, which determines how much redundancy can be removed at most during transform and how many spatial priors can be utilized to synthesize textures during inverse transform. Existing methods rely on stacks of small kernels, whose ERF remains not large enough instead, or heavy non-local attention mechanisms, which limit the potential of high resolution image coding. To tackle this issue, we propose Large Receptive Field Transform Coding with Adaptive Weights for Learned Image Compression (LLIC). Specifically, for the first time in learned image compression community, we introduce a few large kernel-based depth-wise convolutions to reduce more redundancy while maintaining modest complexity. Due to wide range of image diversity, we propose to enhance the adaptability of convolutions via generating weights in a self-conditioned manner. The large kernels cooperate with non-linear embedding and gate mechanisms for better expressiveness and lighter point-wise interactions. We also investigate improved training techniques to fully exploit the potential of large kernels. In addition, to enhance the interactions among channels, we propose the adaptive channel-wise bit allocation via generating channel importance factor in a self-conditioned manner. To demonstrate the effectiveness of proposed transform coding, we align the entropy model to compare with existing transform methods and obtain models LLIC-STF, LLIC-ELIC, LLIC-TCM. Extensive experiments demonstrate our proposed LLIC models have significant improvements over corresponding baselines and achieve state-of-the-art performances and better trade-off between performance and complexity.
As modern DNN models grow ever larger, collective communications between the accelerators (allreduce, etc.) emerge as a significant performance bottleneck. Designing efficient communication schedules is challenging given today's highly diverse and heterogeneous network fabrics. In this paper, we present ForestColl, a tool that generates efficient schedules for any network topology. ForestColl constructs broadcast/aggregation spanning trees as the communication schedule, achieving theoretically minimum network congestion. Its schedule generation runs in strongly polynomial time and is highly scalable. ForestColl supports any network fabrics, including both switching fabrics and direct connections, as well as any network graph structure. We evaluated ForestColl on multi-cluster AMD MI250 and NVIDIA A100 platforms. ForestColl's schedules achieved up to 52\% higher performance compared to the vendors' own optimized communication libraries, RCCL and NCCL. ForestColl also outperforms other state-of-the-art schedule generation techniques with both up to 61\% more efficient generated schedules and orders of magnitude faster schedule generation speed.
The electronic design automation of analog circuits has been a longstanding challenge in the integrated circuit field due to the huge design space and complex design trade-offs among circuit specifications. In the past decades, intensive research efforts have mostly been paid to automate the transistor sizing with a given circuit topology. By recognizing the graph nature of circuits, this paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing based on the encoder-dependent optimization subroutines. Particularly, CktGNN encodes circuit graphs using a two-level GNN framework (of nested GNN) where circuits are represented as combinations of subgraphs in a known subgraph basis. In this way, it significantly improves design efficiency by reducing the number of subgraphs to perform message passing. Nonetheless, another critical roadblock to advancing learning-assisted circuit design automation is a lack of public benchmarks to perform canonical assessment and reproducible research. To tackle the challenge, we introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers with carefully-extracted circuit specifications. OCB is also equipped with communicative circuit generation and evaluation capabilities such that it can help to generalize CktGNN to design various analog circuits by producing corresponding datasets. Experiments on OCB show the extraordinary advantages of CktGNN through representation-based optimization frameworks over other recent powerful GNN baselines and human experts' manual designs. Our work paves the way toward a learning-based open-sourced design automation for analog circuits. Our source code is available at \url{//github.com/zehao-dong/CktGNN}.
We present a novel approach for the detection of deepfake videos using a pair of vision transformers pre-trained by a self-supervised masked autoencoding setup. Our method consists of two distinct components, one of which focuses on learning spatial information from individual RGB frames of the video, while the other learns temporal consistency information from optical flow fields generated from consecutive frames. Unlike most approaches where pre-training is performed on a generic large corpus of images, we show that by pre-training on smaller face-related datasets, namely Celeb-A (for the spatial learning component) and YouTube Faces (for the temporal learning component), strong results can be obtained. We perform various experiments to evaluate the performance of our method on commonly used datasets namely FaceForensics++ (Low Quality and High Quality, along with a new highly compressed version named Very Low Quality) and Celeb-DFv2 datasets. Our experiments show that our method sets a new state-of-the-art on FaceForensics++ (LQ, HQ, and VLQ), and obtains competitive results on Celeb-DFv2. Moreover, our method outperforms other methods in the area in a cross-dataset setup where we fine-tune our model on FaceForensics++ and test on CelebDFv2, pointing to its strong cross-dataset generalization ability.
Physical adversarial attacks pose a significant practical threat as it deceives deep learning systems operating in the real world by producing prominent and maliciously designed physical perturbations. Emphasizing the evaluation of naturalness is crucial in such attacks, as humans can readily detect and eliminate unnatural manipulations. To overcome this limitation, recent work has proposed leveraging generative adversarial networks (GANs) to generate naturalistic patches, which may not catch human's attention. However, these approaches suffer from a limited latent space which leads to an inevitable trade-off between naturalness and attack efficiency. In this paper, we propose a novel approach to generate naturalistic and inconspicuous adversarial patches. Specifically, we redefine the optimization problem by introducing an additional loss term to the cost function. This term works as a semantic constraint to ensure that the generated camouflage pattern holds semantic meaning rather than arbitrary patterns. The additional term leverages similarity metrics to construct a similarity loss that we optimize within the global objective function. Our technique is based on directly manipulating the pixel values in the patch, which gives higher flexibility and larger space compared to the GAN-based techniques that are based on indirectly optimizing the patch by modifying the latent vector. Our attack achieves superior success rate of up to 91.19\% and 72\%, respectively, in the digital world and when deployed in smart cameras at the edge compared to the GAN-based technique.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.