亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We describe and analyze a hybrid finite element/neural network method for predicting solutions of partial differential equations. The methodology is designed for obtaining fine scale fluctuations from neural networks in a local manner. The network is capable of locally correcting a coarse finite element solution towards a fine solution taking the source term and the coarse approximation as input. Key observation is the dependency between quality of predictions and the size of training set which consists of different source terms and corresponding fine & coarse solutions. We provide the a priori error analysis of the method together with the stability analysis of the neural network. The numerical experiments confirm the capability of the network predicting fine finite element solutions. We also illustrate the generalization of the method to problems where test and training domains differ from each other.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

We present a finite element approach for diffusion problems with thermal fluctuations based on a fluctuating hydrodynamics model. The governing transport equations are stochastic partial differential equations with a fluctuating forcing term. We propose a discrete formulation of the stochastic forcing term that has the correct covariance matrix up to a standard discretization error. Furthermore, to obtain a numerical solution with spatial correlations that converge to those of the continuum equation, we derive a linear mapping to transform the finite element solution into an equivalent discrete solution that is free from the artificial correlations introduced by the spatial discretization. The method is validated by applying it to two diffusion problems: a second-order diffusion equation and a fourth-order diffusion equation. The theoretical (continuum) solution to the first case presents spatially decorrelated fluctuations, while the second case presents fluctuations correlated over a finite length. In both cases, the numerical solution presents a structure factor that approximates well the continuum one.

We present an efficient matrix-free geometric multigrid method for the elastic Helmholtz equation, and a suitable discretization. Many discretization methods had been considered in the literature for the Helmholtz equations, as well as many solvers and preconditioners, some of which are adapted for the elastic version of the equation. However, there is very little work considering the reciprocity of discretization and a solver. In this work, we aim to bridge this gap. By choosing an appropriate stencil for re-discretization of the equation on the coarse grid, we develop a multigrid method that can be easily implemented as matrix-free, relying on stencils rather than sparse matrices. This is crucial for efficient implementation on modern hardware. Using two-grid local Fourier analysis, we validate the compatibility of our discretization with our solver, and tune a choice of weights for the stencil for which the convergence rate of the multigrid cycle is optimal. It results in a scalable multigrid preconditioner that can tackle large real-world 3D scenarios.

We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.

We develop an NLP-based procedure for detecting systematic nonmeritorious consumer complaints, simply called systematic anomalies, among complaint narratives. While classification algorithms are used to detect pronounced anomalies, in the case of smaller and frequent systematic anomalies, the algorithms may falter due to a variety of reasons, including technical ones as well as natural limitations of human analysts. Therefore, as the next step after classification, we convert the complaint narratives into quantitative data, which are then analyzed using an algorithm for detecting systematic anomalies. We illustrate the entire procedure using complaint narratives from the Consumer Complaint Database of the Consumer Financial Protection Bureau.

Modelling noisy data in a network context remains an unavoidable obstacle; fortunately, random matrix theory may comprehensively describe network environments effectively. Thus it necessitates the probabilistic characterisation of these networks (and accompanying noisy data) using matrix variate models. Denoising network data using a Bayes approach is not common in surveyed literature. This paper adopts the Bayesian viewpoint and introduces a new matrix variate t-model in a prior sense by relying on the matrix variate gamma distribution for the noise process, following the Gaussian graphical network for the cases when the normality assumption is violated. From a statistical learning viewpoint, such a theoretical consideration indubitably benefits the real-world comprehension of structures causing noisy data with network-based attributes as part of machine learning in data science. A full structural learning procedure is provided for calculating and approximating the resulting posterior of interest to assess the considered model's network centrality measures. Experiments with synthetic and real-world stock price data are performed not only to validate the proposed algorithm's capabilities but also to show that this model has wider flexibility than originally implied in Billio et al. (2021).

We propose an innovative and generic methodology to analyse individual and collective behaviour through individual trajectory data. The work is motivated by the analysis of GPS trajectories of fishing vessels collected from regulatory tracking data in the context of marine biodiversity conservation and ecosystem-based fisheries management. We build a low-dimensional latent representation of trajectories using convolutional neural networks as non-linear mapping. This is done by training a conditional variational auto-encoder taking into account covariates. The posterior distributions of the latent representations can be linked to the characteristics of the actual trajectories. The latent distributions of the trajectories are compared with the Bhattacharyya coefficient, which is well-suited for comparing distributions. Using this coefficient, we analyse the variation of the individual behaviour of each vessel during time. For collective behaviour analysis, we build proximity graphs and use an extension of the stochastic block model for multiple networks. This model results in a clustering of the individuals based on their set of trajectories. The application to French fishing vessels enables us to obtain groups of vessels whose individual and collective behaviours exhibit spatio-temporal patterns over the period 2014-2018.

We develop a novel discontinuous Galerkin method for solving the rotating thermal shallow water equations (TRSW) on a curvilinear mesh. Our method is provably entropy stable, conserves mass, buoyancy and vorticity, while also semi-discretely conserving energy. This is achieved by using novel numerical fluxes and splitting the pressure and convection operators. We implement our method on a cubed sphere mesh and numerically verify our theoretical results. Our experiments demonstrate the robustness of the method for a regime of well developed turbulence, where it can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence, eliminating the need for artificial stabilization.

The numerical integration of stiff equations is a challenging problem that needs to be approached by specialized numerical methods. Exponential integrators form a popular class of such methods since they are provably robust to stiffness and have been successfully applied to a variety of problems. The dynamical low- \rank approximation is a recent technique for solving high-dimensional differential equations by means of low-rank approximations. However, the domain is lacking numerical methods for stiff equations since existing methods are either not robust-to-stiffness or have unreasonably large hidden constants. In this paper, we focus on solving large-scale stiff matrix differential equations with a Sylvester-like structure, that admit good low-rank approximations. We propose two new methods that have good convergence properties, small memory footprint and that are fast to compute. The theoretical analysis shows that the new methods have order one and two, respectively. We also propose a practical implementation based on Krylov techniques. The approximation error is analyzed, leading to a priori error bounds and, therefore, a mean for choosing the size of the Krylov space. Numerical experiments are performed on several examples, confirming the theory and showing good speedup in comparison to existing techniques.

Parameter identification problems in partial differential equations (PDEs) consist in determining one or more unknown functional parameters in a PDE. Here, the Bayesian nonparametric approach to such problems is considered. Focusing on the representative example of inferring the diffusivity function in an elliptic PDE from noisy observations of the PDE solution, the performance of Bayesian procedures based on Gaussian process priors is investigated. Recent asymptotic theoretical guarantees establishing posterior consistency and convergence rates are reviewed and expanded upon. An implementation of the associated posterior-based inference is provided, and illustrated via a numerical simulation study where two different discretisation strategies are devised. The reproducible code is available at: //github.com/MattGiord.

We propose novel optimal and parameter-free algorithms for computing an approximate solution with small (projected) gradient norm. Specifically, for computing an approximate solution such that the norm of its (projected) gradient does not exceed $\varepsilon$, we obtain the following results: a) for the convex case, the total number of gradient evaluations is bounded by $O(1)\sqrt{L\|x_0 - x^*\|/\varepsilon}$, where $L$ is the Lipschitz constant of the gradient and $x^*$ is any optimal solution; b) for the strongly convex case, the total number of gradient evaluations is bounded by $O(1)\sqrt{L/\mu}\log(\|\nabla f(x_0)\|/\epsilon)$, where $\mu$ is the strong convexity modulus; and c) for the nonconvex case, the total number of gradient evaluations is bounded by $O(1)\sqrt{Ll}(f(x_0) - f(x^*))/\varepsilon^2$, where $l$ is the lower curvature constant. Our complexity results match the lower complexity bounds of the convex and strongly cases, and achieve the above best-known complexity bound for the nonconvex case for the first time in the literature. Moreover, for all the convex, strongly convex, and nonconvex cases, we propose parameter-free algorithms that do not require the input of any problem parameters. To the best of our knowledge, there do not exist such parameter-free methods before especially for the strongly convex and nonconvex cases. Since most regularity conditions (e.g., strong convexity and lower curvature) are imposed over a global scope, the corresponding problem parameters are notoriously difficult to estimate. However, gradient norm minimization equips us with a convenient tool to monitor the progress of algorithms and thus the ability to estimate such parameters in-situ.

北京阿比特科技有限公司