The paper presents a stochastic analysis of the growth rate of viscous fingers in miscible displacement in a heterogeneous porous medium. The statistical parameters characterizing the permeability distribution of a reservoir vary over a wide range. The formation of fingers is provided by the mixing of different-viscosity fluids -- water and polymer solution. The distribution functions of the growth rate of viscous fingers are numerically determined and visualized. Careful data processing reveals the non-monotonic nature of the dependence of the front end of the mixing zone on the correlation length of the permeability (describing the medium graininess) of the reservoir formation. It is demonstrated that an increase in graininess up to a certain value causes an expansion of the distribution shape and a shift of the distribution maximum to the region of higher velocities. In addition, an increase in the standard deviation of permeability leads to a slight change in the shape and characteristics of the density distribution of the growth rates of viscous fingers. The theoretical predictions within the framework of the transverse flow equilibrium approximation and the Koval model are contrasted with the numerically computed velocity distributions.
When fitting the learning data of an individual to algorithm-like learning models, the observations are so dependent and non-stationary that one may wonder what the classical Maximum Likelihood Estimator (MLE) could do, even if it is the usual tool applied to experimental cognition. Our objective in this work is to show that the estimation of the learning rate cannot be efficient if the learning rate is constant in the classical Exp3 (Exponential weights for Exploration and Exploitation) algorithm. Secondly, we show that if the learning rate decreases polynomially with the sample size, then the prediction error and in some cases the estimation error of the MLE satisfy bounds in probability that decrease at a polynomial rate.
This paper establishes the fundamental limits of a two-user single-receiver system where communication from User 1 (but not from User 2) needs to be undetectable to an external warden. Our fundamental limits show a tradeoff between the highest rates (or square-root rates) that are simultaneously achievable for the two users. Moreover, coded time-sharing for both users is fundamentally required on most channels, which distinguishes this setup from the more classical setups with either only covert users or only non-covert users. Interestingly, the presence of a non-covert user can be beneficial for improving the covert capacity of the other user.
In the recent literature on estimating heterogeneous treatment effects, each proposed method makes its own set of restrictive assumptions about the intervention's effects and which subpopulations to explicitly estimate. Moreover, the majority of the literature provides no mechanism to identify which subpopulations are the most affected--beyond manual inspection--and provides little guarantee on the correctness of the identified subpopulations. Therefore, we propose Treatment Effect Subset Scan (TESS), a new method for discovering which subpopulation in a randomized experiment is most significantly affected by a treatment. We frame this challenge as a pattern detection problem where we efficiently maximize a nonparametric scan statistic (a measure of the conditional quantile treatment effect) over subpopulations. Furthermore, we identify the subpopulation which experiences the largest distributional change as a result of the intervention, while making minimal assumptions about the intervention's effects or the underlying data generating process. In addition to the algorithm, we demonstrate that under the sharp null hypothesis of no treatment effect, the asymptotic Type I and II error can be controlled, and provide sufficient conditions for detection consistency--i.e., exact identification of the affected subpopulation. Finally, we validate the efficacy of the method by discovering heterogeneous treatment effects in simulations and in real-world data from a well-known program evaluation study.
Numerically solving high-dimensional partial differential equations (PDEs) is a major challenge. Conventional methods, such as finite difference methods, are unable to solve high-dimensional PDEs due to the curse-of-dimensionality. A variety of deep learning methods have been recently developed to try and solve high-dimensional PDEs by approximating the solution using a neural network. In this paper, we prove global convergence for one of the commonly-used deep learning algorithms for solving PDEs, the Deep Galerkin Method (DGM). DGM trains a neural network approximator to solve the PDE using stochastic gradient descent. We prove that, as the number of hidden units in the single-layer network goes to infinity (i.e., in the ``wide network limit"), the trained neural network converges to the solution of an infinite-dimensional linear ordinary differential equation (ODE). The PDE residual of the limiting approximator converges to zero as the training time $\rightarrow \infty$. Under mild assumptions, this convergence also implies that the neural network approximator converges to the solution of the PDE. A closely related class of deep learning methods for PDEs is Physics Informed Neural Networks (PINNs). Using the same mathematical techniques, we can prove a similar global convergence result for the PINN neural network approximators. Both proofs require analyzing a kernel function in the limit ODE governing the evolution of the limit neural network approximator. A key technical challenge is that the kernel function, which is a composition of the PDE operator and the neural tangent kernel (NTK) operator, lacks a spectral gap, therefore requiring a careful analysis of its properties.
We consider a standard two-source model for uniform common randomness (UCR) generation, in which Alice and Bob observe independent and identically distributed (i.i.d.) samples of a correlated finite source and where Alice is allowed to send information to Bob over an arbitrary single-user channel. We study the \(\boldsymbol{\epsilon}\)-UCR capacity for the proposed model, defined as the maximum common randomness rate one can achieve such that the probability that Alice and Bob do not agree on a common uniform or nearly uniform random variable does not exceed \(\boldsymbol{\epsilon}.\) We establish a lower and an upper bound on the \(\boldsymbol{\epsilon}\)-UCR capacity using the bounds on the \(\boldsymbol{\epsilon}\)-transmission capacity proved by Verd\'u and Han for arbitrary point-to-point channels.
The internet is undergoing a transformation driven by trust issues with incumbent providers and the rise of Web3 and the Metaverse. Current large-scale social metaverse platforms have low adoption, and advanced game-based solutions do not address societal or business needs. Platforms like Roblox, VRChat, and Nvidia Omniverse emerge as potential contenders in the metaverse landscape. Distributed compute and large language models can enhance global access equity and address emerging market needs. Uniting ecosystems with transferable goods across digital society through global ledgers like Bitcoin is crucial, despite the risks and uncertainties. AI, machine learning, and generative art play a vital role in driving innovation, safeguarding, and equity. Industry seeks an "open metaverse" to mitigate risks observed in implementations like Meta, requiring open-source and federated approaches in both telecollaboration research and AI. The nostr protocol could enable connections and federations of mixed reality spaces, mediate data synchronization, and maintain secure communication. Overcoming legislative and cultural barriers, integrating large language models and distributed compute, can address trust, accessibility, governance, and safeguarding in the digital society. Open-source tools for supported creativity and augmented intelligence using multi-modal models tackle these challenges. These tools can foster collaborative frameworks across various sectors, such as training, research, biomedical, and creative industries. By utilizing AI-driven technologies, emphasizing trust, accessibility, and open-source approaches, we can create an inclusive, global digital society while promoting technological empowerment and expanding the global ideas market.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.
Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.
Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.