Graphical User Interface (GUI) automation holds significant promise for assisting users with complex tasks, thereby boosting human productivity. Existing works leveraging Large Language Model (LLM) or LLM-based AI agents have shown capabilities in automating tasks on Android and Web platforms. However, these tasks are primarily aimed at simple device usage and entertainment operations. This paper presents a novel benchmark, AssistGUI, to evaluate whether models are capable of manipulating the mouse and keyboard on the Windows platform in response to user-requested tasks. We carefully collected a set of 100 tasks from nine widely-used software applications, such as, After Effects and MS Word, each accompanied by the necessary project files for better evaluation. Moreover, we propose an advanced Actor-Critic Embodied Agent framework, which incorporates a sophisticated GUI parser driven by an LLM-agent and an enhanced reasoning mechanism adept at handling lengthy procedural tasks. Our experimental results reveal that our GUI Parser and Reasoning mechanism outshine existing methods in performance. Nevertheless, the potential remains substantial, with the best model attaining only a 46% success rate on our benchmark. We conclude with a thorough analysis of the current methods' limitations, setting the stage for future breakthroughs in this domain.
This paper addresses the challenge of mitigating data heterogeneity among clients within a Federated Learning (FL) framework. The model-drift issue, arising from the noniid nature of client data, often results in suboptimal personalization of a global model compared to locally trained models for each client. To tackle this challenge, we propose a novel approach named FedD2S for Personalized Federated Learning (pFL), leveraging knowledge distillation. FedD2S incorporates a deep-to-shallow layer-dropping mechanism in the data-free knowledge distillation process to enhance local model personalization. Through extensive simulations on diverse image datasets-FEMNIST, CIFAR10, CINIC0, and CIFAR100-we compare FedD2S with state-of-the-art FL baselines. The proposed approach demonstrates superior performance, characterized by accelerated convergence and improved fairness among clients. The introduced layer-dropping technique effectively captures personalized knowledge, resulting in enhanced performance compared to alternative FL models. Moreover, we investigate the impact of key hyperparameters, such as the participation ratio and layer-dropping rate, providing valuable insights into the optimal configuration for FedD2S. The findings demonstrate the efficacy of adaptive layer-dropping in the knowledge distillation process to achieve enhanced personalization and performance across diverse datasets and tasks.
We present Universal Manipulation Interface (UMI) -- a data collection and policy learning framework that allows direct skill transfer from in-the-wild human demonstrations to deployable robot policies. UMI employs hand-held grippers coupled with careful interface design to enable portable, low-cost, and information-rich data collection for challenging bimanual and dynamic manipulation demonstrations. To facilitate deployable policy learning, UMI incorporates a carefully designed policy interface with inference-time latency matching and a relative-trajectory action representation. The resulting learned policies are hardware-agnostic and deployable across multiple robot platforms. Equipped with these features, UMI framework unlocks new robot manipulation capabilities, allowing zero-shot generalizable dynamic, bimanual, precise, and long-horizon behaviors, by only changing the training data for each task. We demonstrate UMI's versatility and efficacy with comprehensive real-world experiments, where policies learned via UMI zero-shot generalize to novel environments and objects when trained on diverse human demonstrations. UMI's hardware and software system is open-sourced at //umi-gripper.github.io.
While Large Language Models (LLMs) have demonstrated enhanced capabilities in function-calling, these advancements primarily rely on accessing the functions' responses. This methodology is practical for simpler APIs but faces scalability issues with irreversible APIs that significantly impact the system, such as a database deletion API. Similarly, processes requiring extensive time for each API call and those necessitating forward planning, like automated action pipelines, present complex challenges. Furthermore, scenarios often arise where a generalized approach is needed because algorithms lack direct access to the specific implementations of these functions or secrets to use them. Traditional tool planning methods are inadequate in these cases, compelling the need to operate within black-box environments. Unlike their performance in tool manipulation, LLMs excel in black-box tasks, such as program synthesis. Therefore, we harness the program synthesis capabilities of LLMs to strategize tool usage in black-box settings, ensuring solutions are verified prior to implementation. We introduce TOPGUN, an ingeniously crafted approach leveraging program synthesis for black box tool planning. Accompanied by SwissNYF, a comprehensive suite that integrates black-box algorithms for planning and verification tasks, addressing the aforementioned challenges and enhancing the versatility and effectiveness of LLMs in complex API interactions. The public code for SwissNYF is available at //github.com/iclr-dummy-user/SwissNYF.
Existing automatic approaches for 3D virtual character motion synthesis supporting scene interactions do not generalise well to new objects outside training distributions, even when trained on extensive motion capture datasets with diverse objects and annotated interactions. This paper addresses this limitation and shows that robustness and generalisation to novel scene objects in 3D object-aware character synthesis can be achieved by training a motion model with as few as one reference object. We leverage an implicit feature representation trained on object-only datasets, which encodes an SE(3)-equivariant descriptor field around the object. Given an unseen object and a reference pose-object pair, we optimise for the object-aware pose that is closest in the feature space to the reference pose. Finally, we use l-NSM, i.e., our motion generation model that is trained to seamlessly transition from locomotion to object interaction with the proposed bidirectional pose blending scheme. Through comprehensive numerical comparisons to state-of-the-art methods and in a user study, we demonstrate substantial improvements in 3D virtual character motion and interaction quality and robustness to scenarios with unseen objects. Our project page is available at //vcai.mpi-inf.mpg.de/projects/ROAM/.
Low latency and high synchronization among users are critical for emerging multi-user virtual interaction applications. However, the existing ground-based cloud solutions are naturally limited by the complex ground topology and fiber speeds, making it difficult to pace with the requirement of multi-user virtual interaction. The growth of low earth orbit (LEO) satellite constellations becomes a promising alternative to ground solutions. To fully exploit the potential of the LEO satellite, in this paper, we study the satellite server selection problem for global-scale multi-user interaction applications over LEO constellations. We propose an effective server selection framework, called SpaceMeta, that jointly selects the ingress satellite servers and relay servers on the communication path to minimize latency and latency discrepancy among users. Extensive experiments using real-world Starlink topology demonstrate that SpaceMeta reduces the latency by 6.72% and the interquartile range (IQR) of user latency by 39.50% compared with state-of-the-art methods.
We present MLTCP, a technique to augment today's congestion control algorithms to accelerate DNN training jobs in shared GPU clusters. MLTCP enables the communication phases of jobs that compete for network bandwidth to interleave with each other, thereby utilizing the network efficiently. At the heart of MLTCP lies a very simple principle based on a key conceptual insight: DNN training flows should scale their congestion window size based on the number of bytes sent at each training iteration. We show that integrating this principle into today's congestion control protocols is straightforward: by adding 30-60 lines of code to Reno, CUBIC, or DCQCN, MLTCP stabilizes flows of different jobs into an interleaved state within a few training iterations, regardless of the number of competing flows or the start time of each flow. Our experiments with popular DNN training jobs demonstrate that enabling MLTCP accelerates the average and 99th percentile training iteration time by up to 2x and 4x, respectively.
Polar codes, developed on the foundation of Arikan's polarization kernel, represent a breakthrough in coding theory and have emerged as the state-of-the-art error-correction-code in short-to-medium block length regimes. Importantly, recent research has indicated that the reliability of polar codes can be further enhanced by substituting Arikan's kernel with a larger one, leading to a faster polarization. However, for short-to-medium block length regimes, the development of polar codes that effectively employ large kernel sizes has not yet been realized. In this paper, we explore a novel, non-linear generalization of polar codes with an expanded kernel size, which we call DeepPolar codes. Our results show that DeepPolar codes effectively utilize the benefits of larger kernel size, resulting in enhanced reliability compared to both the existing neural codes and conventional polar codes.
In the past few decades, artificial intelligence (AI) technology has experienced swift developments, changing everyone's daily life and profoundly altering the course of human society. The intention of developing AI is to benefit humans, by reducing human labor, bringing everyday convenience to human lives, and promoting social good. However, recent research and AI applications show that AI can cause unintentional harm to humans, such as making unreliable decisions in safety-critical scenarios or undermining fairness by inadvertently discriminating against one group. Thus, trustworthy AI has attracted immense attention recently, which requires careful consideration to avoid the adverse effects that AI may bring to humans, so that humans can fully trust and live in harmony with AI technologies. Recent years have witnessed a tremendous amount of research on trustworthy AI. In this survey, we present a comprehensive survey of trustworthy AI from a computational perspective, to help readers understand the latest technologies for achieving trustworthy AI. Trustworthy AI is a large and complex area, involving various dimensions. In this work, we focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being. For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems. We also discuss the accordant and conflicting interactions among different dimensions and discuss potential aspects for trustworthy AI to investigate in the future.
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.
We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on the MNIST dataset of handwritten digits, evaluated on the generative adversarial metric and at semi-supervised image classification.