亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A resource-constrained unmanned aerial vehicle (UAV) can be used as a flying LoRa gateway (GW) to move inside the target area for efficient data collection and LoRa resource management. In this work, we propose deep reinforcement learning (DRL) to optimize the energy efficiency (EE) in wireless LoRa networks composed of LoRa end devices (EDs) and a flying GW to extend the network lifetime. The trained DRL agent can efficiently allocate the spreading factors (SFs) and transmission powers (TPs) to EDs while considering the air-to-ground wireless link and the availability of SFs. In addition, we allow the flying GW to adjust its optimal policy onboard and perform online resource allocation. This is accomplished through retraining the DRL agent using reduced action space. Simulation results demonstrate that our proposed DRL-based online resource allocation scheme can achieve higher EE in LoRa networks over three benchmark schemes.

相關內容

This paper addresses the important need for advanced techniques in continuously allocating workloads on shared infrastructures in data centers, a problem arising due to the growing popularity and scale of cloud computing. It particularly emphasizes the scarcity of research ensuring guaranteed capacity in capacity reservations during large-scale failures. To tackle these issues, the paper presents scalable solutions for resource management. It builds on the prior establishment of capacity reservation in cluster management systems and the two-level resource allocation problem addressed by the Resource Allowance System (RAS). Recognizing the limitations of Mixed Integer Linear Programming (MILP) for server assignment in a dynamic environment, this paper proposes the use of Deep Reinforcement Learning (DRL), which has been successful in achieving long-term optimal results for time-varying systems. A novel two-level design that utilizes a DRL-based algorithm is introduced to solve optimal server-to-reservation assignment, taking into account of fault tolerance, server movement minimization, and network affinity requirements due to the impracticality of directly applying DRL algorithms to large-scale instances with millions of decision variables. The paper explores the interconnection of these levels and the benefits of such an approach for achieving long-term optimal results in the context of large-scale cloud systems. We further show in the experiment section that our two-level DRL approach outperforms the MIP solver and heuristic approaches and exhibits significantly reduced computation time compared to the MIP solver. Specifically, our two-level DRL approach performs 15% better than the MIP solver on minimizing the overall cost. Also, it uses only 26 seconds to execute 30 rounds of decision making, while the MIP solver needs nearly an hour.

Many applications, e.g., in shared mobility, require coordinating a large number of agents. Mean-field reinforcement learning addresses the resulting scalability challenge by optimizing the policy of a representative agent. In this paper, we address an important generalization where there exist global constraints on the distribution of agents (e.g., requiring capacity constraints or minimum coverage requirements to be met). We propose Safe-$\text{M}^3$-UCRL, the first model-based algorithm that attains safe policies even in the case of unknown transition dynamics. As a key ingredient, it uses epistemic uncertainty in the transition model within a log-barrier approach to ensure pessimistic constraints satisfaction with high probability. We showcase Safe-$\text{M}^3$-UCRL on the vehicle repositioning problem faced by many shared mobility operators and evaluate its performance through simulations built on Shenzhen taxi trajectory data. Our algorithm effectively meets the demand in critical areas while ensuring service accessibility in regions with low demand.

Coverage path planning is the problem of finding the shortest path that covers the entire free space of a given confined area, with applications ranging from robotic lawn mowing and vacuum cleaning, to demining and search-and-rescue tasks. While offline methods can find provably complete, and in some cases optimal, paths for known environments, their value is limited in online scenarios where the environment is not known beforehand, especially in the presence of non-static obstacles. We propose an end-to-end reinforcement learning-based approach in continuous state and action space, for the online coverage path planning problem that can handle unknown environments. We construct the observation space from both global maps and local sensory inputs, allowing the agent to plan a long-term path, and simultaneously act on short-term obstacle detections. To account for large-scale environments, we propose to use a multi-scale map input representation. Furthermore, we propose a novel total variation reward term for eliminating thin strips of uncovered space in the learned path. To validate the effectiveness of our approach, we perform extensive experiments in simulation with a distance sensor, surpassing the performance of a recent reinforcement learning-based approach.

Transfer learning in Reinforcement Learning (RL) has been widely studied to overcome training issues of Deep-RL, i.e., exploration cost, data availability and convergence time, by introducing a way to enhance training phase with external knowledge. Generally, knowledge is transferred from expert-agents to novices. While this fixes the issue for a novice agent, a good understanding of the task on expert agent is required for such transfer to be effective. As an alternative, in this paper we propose Expert-Free Online Transfer Learning (EF-OnTL), an algorithm that enables expert-free real-time dynamic transfer learning in multi-agent system. No dedicated expert exists, and transfer source agent and knowledge to be transferred are dynamically selected at each transfer step based on agents' performance and uncertainty. To improve uncertainty estimation, we also propose State Action Reward Next-State Random Network Distillation (sars-RND), an extension of RND that estimates uncertainty from RL agent-environment interaction. We demonstrate EF-OnTL effectiveness against a no-transfer scenario and advice-based baselines, with and without expert agents, in three benchmark tasks: Cart-Pole, a grid-based Multi-Team Predator-Prey (mt-pp) and Half Field Offense (HFO). Our results show that EF-OnTL achieve overall comparable performance when compared against advice-based baselines while not requiring any external input nor threshold tuning. EF-OnTL outperforms no-transfer with an improvement related to the complexity of the task addressed.

Demand flexibility plays a vital role in maintaining grid balance, reducing peak demand, and saving customers' energy bills. Given their highly shiftable load and significant contribution to a building's energy consumption, Heating, Ventilation, and Air Conditioning (HVAC) systems can provide valuable demand flexibility to the power systems by adjusting their energy consumption in response to electricity price and power system needs. To exploit this flexibility in both operation time and power, it is imperative to accurately model and aggregate the load flexibility of a large population of HVAC systems as well as designing effective control algorithms. In this paper, we tackle the curse of dimensionality issue in modeling and control by utilizing the concept of laxity to quantify the emergency level of each HVAC operation request. We further propose a two-level approach to address energy optimization for a large population of HVAC systems. The lower level involves an aggregator to aggregate HVAC load laxity information and use least-laxity-first (LLF) rule to allocate real-time power for individual HVAC systems based on the controller's total power. Due to the complex and uncertain nature of HVAC systems, we leverage a reinforcement learning (RL)-based controller to schedule the total power based on the aggregated laxity information and electricity price. We evaluate the temperature control and energy cost saving performance of a large-scale group of HVAC systems in both single-zone and multi-zone scenarios, under varying climate and electricity market conditions. The experiment results indicate that proposed approach outperforms the centralized methods in the majority of test scenarios, and performs comparably to model-based method in some scenarios.

Reinforcement Learning (RL) has made promising progress in planning and decision-making for Autonomous Vehicles (AVs) in simple driving scenarios. However, existing RL algorithms for AVs fail to learn critical driving skills in complex urban scenarios. First, urban driving scenarios require AVs to handle multiple driving tasks of which conventional RL algorithms are incapable. Second, the presence of other vehicles in urban scenarios results in a dynamically changing environment, which challenges RL algorithms to plan the action and trajectory of the AV. In this work, we propose an action and trajectory planner using Hierarchical Reinforcement Learning (atHRL) method, which models the agent behavior in a hierarchical model by using the perception of the lidar and birdeye view. The proposed atHRL method learns to make decisions about the agent's future trajectory and computes target waypoints under continuous settings based on a hierarchical DDPG algorithm. The waypoints planned by the atHRL model are then sent to a low-level controller to generate the steering and throttle commands required for the vehicle maneuver. We empirically verify the efficacy of atHRL through extensive experiments in complex urban driving scenarios that compose multiple tasks with the presence of other vehicles in the CARLA simulator. The experimental results suggest a significant performance improvement compared to the state-of-the-art RL methods.

Various methods for Multi-Agent Reinforcement Learning (MARL) have been developed with the assumption that agents' policies are based on accurate state information. However, policies learned through Deep Reinforcement Learning (DRL) are susceptible to adversarial state perturbation attacks. In this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to investigate the fundamental properties of MARL under state uncertainties. Our analysis shows that the commonly used solution concepts of optimal agent policy and robust Nash equilibrium do not always exist in SAMGs. To circumvent this difficulty, we consider a new solution concept called robust agent policy, where agents aim to maximize the worst-case expected state value. We prove the existence of robust agent policy for finite state and finite action SAMGs. Additionally, we propose a Robust Multi-Agent Adversarial Actor-Critic (RMA3C) algorithm to learn robust policies for MARL agents under state uncertainties. Our experiments demonstrate that our algorithm outperforms existing methods when faced with state perturbations and greatly improves the robustness of MARL policies. Our code is public on //songyanghan.github.io/what_is_solution/.

Under sparse extrinsic reward settings, reinforcement learning has remained challenging, despite surging interests in this field. Previous attempts suggest that intrinsic reward can alleviate the issue caused by sparsity. In this article, we present a novel intrinsic reward that is inspired by human learning, as humans evaluate curiosity by comparing current observations with historical knowledge. Our method involves training a self-supervised prediction model, saving snapshots of the model parameters, and using nuclear norm to evaluate the temporal inconsistency between the predictions of different snapshots as intrinsic rewards. We also propose a variational weighting mechanism to assign weight to different snapshots in an adaptive manner. Our experimental results on various benchmark environments demonstrate the efficacy of our method, which outperforms other intrinsic reward-based methods without additional training costs and with higher noise tolerance. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.

北京阿比特科技有限公司