In the industrial Internet of Things, condition monitoring sensor signals from complex systems often exhibit strong nonlinear and stochastic spatial-temporal dynamics under varying operating conditions. Such complex dynamics make fault detection particularly challenging. Although previously proposed methods effectively model these dynamics, they often neglect the dynamic evolution of relationships between sensor signals. Undetected shifts in these relationships can potentially result in significant system failures. Another limitation is their inability to effectively distinguish between novel operating conditions and actual faults. To address this gap, we propose DyEdgeGAT (Dynamic Edge via Graph Attention), a novel approach capable of detecting various faults, especially those characterized by relationship changes at early stages, while distinguishing faults from novel operating conditions. DyEdgeGAT is a graph-based framework that provides a novel graph inference scheme for multivariate time series that dynamically constructs edges to represent and track the evolution of relationships between time series. Additionally, it addresses a commonly overlooked aspect: the cause-and-effect relationships within the system, such as between control inputs and measurements. By incorporating system-independent variables as contexts of operating conditions into node dynamics extraction, DyEdgeGAT enhances its robustness against novel operating conditions. We rigorously evaluate DyEdgeGAT's performance using both a synthetic dataset, designed to simulate varying levels of fault severity and a real-world industrial-scale benchmark containing a variety of fault types with different detection complexities. Our findings demonstrate that DyEdgeGAT is highly effective in fault detection, showing particular strength in early fault detection while maintaining robustness under novel operating conditions.
Collaborative Filtering (CF) is a pivotal research area in recommender systems that capitalizes on collaborative similarities between users and items to provide personalized recommendations. With the remarkable achievements of node embedding-based Graph Neural Networks (GNNs), we explore the upper bounds of expressiveness inherent to embedding-based methodologies and tackle the challenges by reframing the CF task as a graph signal processing problem. To this end, we propose PolyCF, a flexible graph signal filter that leverages polynomial graph filters to process interaction signals. PolyCF exhibits the capability to capture spectral features across multiple eigenspaces through a series of Generalized Gram filters and is able to approximate the optimal polynomial response function for recovering missing interactions. A graph optimization objective and a pair-wise ranking objective are jointly used to optimize the parameters of the convolution kernel. Experiments on three widely adopted datasets demonstrate the superiority of PolyCF over current state-of-the-art CF methods. Moreover, comprehensive studies empirically validate each component's efficacy in the proposed PolyCF.
Automatic speech recognition (ASR) outcomes serve as input for downstream tasks, substantially impacting the satisfaction level of end-users. Hence, the diagnosis and enhancement of the vulnerabilities present in the ASR model bear significant importance. However, traditional evaluation methodologies of ASR systems generate a singular, composite quantitative metric, which fails to provide comprehensive insight into specific vulnerabilities. This lack of detail extends to the post-processing stage, resulting in further obfuscation of potential weaknesses. Despite an ASR model's ability to recognize utterances accurately, subpar readability can negatively affect user satisfaction, giving rise to a trade-off between recognition accuracy and user-friendliness. To effectively address this, it is imperative to consider both the speech-level, crucial for recognition accuracy, and the text-level, critical for user-friendliness. Consequently, we propose the development of an Error Explainable Benchmark (EEB) dataset. This dataset, while considering both speech- and text-level, enables a granular understanding of the model's shortcomings. Our proposition provides a structured pathway for a more `real-world-centric' evaluation, a marked shift away from abstracted, traditional methods, allowing for the detection and rectification of nuanced system weaknesses, ultimately aiming for an improved user experience.
Electronic Health Record (EHR) data, while rich in information, often suffers from sparsity, posing significant challenges in predictive modeling. Traditional imputation methods inadequately distinguish between real and imputed data, leading to potential inaccuracies in models. Addressing this, we introduce PRISM, a novel approach that indirectly imputes data through prototype representations of similar patients, thus ensuring denser and more accurate embeddings. PRISM innovates further with a feature confidence learner module, which evaluates the reliability of each feature in light of missing data. Additionally, it incorporates a novel patient similarity metric that accounts for feature confidence, avoiding overreliance on imprecise imputed values. Our extensive experiments on the MIMIC-III and MIMIC-IV datasets demonstrate PRISM's superior performance in predicting in-hospital mortality and 30-day readmission tasks, showcasing its effectiveness in handling EHR data sparsity. For the sake of reproducibility and further research, we have made the code publicly available at //github.com/yhzhu99/PRISM.
Due to the continuous change in operational data, AIOps solutions suffer from performance degradation over time. Although periodic retraining is the state-of-the-art technique to preserve the failure prediction AIOps models' performance over time, this technique requires a considerable amount of labeled data to retrain. In AIOps obtaining label data is expensive since it requires the availability of domain experts to intensively annotate it. In this paper, we present McUDI, a model-centric unsupervised degradation indicator that is capable of detecting the exact moment the AIOps model requires retraining as a result of changes in data. We further show how employing McUDI in the maintenance pipeline of AIOps solutions can reduce the number of samples that require annotations with 30k for job failure prediction and 260k for disk failure prediction while achieving similar performance with periodic retraining.
Forecasting complex system dynamics, particularly for long-term predictions, is persistently hindered by error accumulation and computational burdens. This study presents RefreshNet, a multiscale framework developed to overcome these challenges, delivering an unprecedented balance between computational efficiency and predictive accuracy. RefreshNet incorporates convolutional autoencoders to identify a reduced order latent space capturing essential features of the dynamics, and strategically employs multiple recurrent neural network (RNN) blocks operating at varying temporal resolutions within the latent space, thus allowing the capture of latent dynamics at multiple temporal scales. The unique "refreshing" mechanism in RefreshNet allows coarser blocks to reset inputs of finer blocks, effectively controlling and alleviating error accumulation. This design demonstrates superiority over existing techniques regarding computational efficiency and predictive accuracy, especially in long-term forecasting. The framework is validated using three benchmark applications: the FitzHugh-Nagumo system, the Reaction-Diffusion equation, and Kuramoto-Sivashinsky dynamics. RefreshNet significantly outperforms state-of-the-art methods in long-term forecasting accuracy and speed, marking a significant advancement in modeling complex systems and opening new avenues in understanding and predicting their behavior.
Structural extraction of events within discourse is critical since it avails a deeper understanding of communication patterns and behavior trends. Event argument extraction (EAE), at the core of event-centric understanding, is the task of identifying role-specific text spans (i.e., arguments) for a given event. Document-level EAE (DocEAE) focuses on arguments that are scattered across an entire document. In this work, we explore the capabilities of open source Large Language Models (LLMs), i.e., Flan-UL2, for the DocEAE task. To this end, we propose ULTRA, a hierarchical framework that extracts event arguments more cost-effectively -- the method needs as few as 50 annotations and doesn't require hitting costly API endpoints. Further, it alleviates the positional bias issue intrinsic to LLMs. ULTRA first sequentially reads text chunks of a document to generate a candidate argument set, upon which ULTRA learns to drop non-pertinent candidates through self-refinement. We further introduce LEAFER to address the challenge LLMs face in locating the exact boundary of an argument span. ULTRA outperforms strong baselines, which include strong supervised models and ChatGPT, by 9.8% when evaluated by the exact match (EM) metric.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.