亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In cluster randomized experiments, units are often recruited after the random cluster assignment, and data are only available for the recruited sample. Post-randomization recruitment can lead to selection bias, inducing systematic differences between the overall and the recruited populations, and between the recruited intervention and control arms. In this setting, we define causal estimands for the overall and the recruited populations. We first show that if units select their cluster independently of the treatment assignment, cluster randomization implies individual randomization in the overall population. We then prove that under the assumption of ignorable recruitment, the average treatment effect on the recruited population can be consistently estimated from the recruited sample using inverse probability weighting. Generally we cannot identify the average treatment effect on the overall population. Nonetheless, we show, via a principal stratification formulation, that one can use weighting of the recruited sample to identify treatment effects on two meaningful subpopulations of the overall population: units who would be recruited into the study regardless of the assignment, and units who would be recruited in the study under treatment but not under control. We develop a corresponding estimation strategy and a sensitivity analysis method for checking the ignorable recruitment assumption.

相關內容

The problem of designing learners that provide guarantees that their predictions are provably correct is of increasing importance in machine learning. However, learning theoretic guarantees have only been considered in very specific settings. In this work, we consider the design and analysis of reliable learners in challenging test-time environments as encountered in modern machine learning problems: namely `adversarial' test-time attacks (in several variations) and `natural' distribution shifts. In this work, we provide a reliable learner with provably optimal guarantees in such settings. We discuss computationally feasible implementations of the learner and further show that our algorithm achieves strong positive performance guarantees on several natural examples: for example, linear separators under log-concave distributions or smooth boundary classifiers under smooth probability distributions.

The joint analysis of multimodal neuroimaging data is critical in the field of brain research because it reveals complex interactive relationships between neurobiological structures and functions. In this study, we focus on investigating the effects of structural imaging (SI) features, including white matter micro-structure integrity (WMMI) and cortical thickness, on the whole brain functional connectome (FC) network. To achieve this goal, we propose a network-based vector-on-matrix regression model to characterize the FC-SI association patterns. We have developed a novel multi-level dense bipartite and clique subgraph extraction method to identify which subsets of spatially specific SI features intensively influence organized FC sub-networks. The proposed method can simultaneously identify highly correlated structural-connectomic association patterns and suppress false positive findings while handling millions of potential interactions. We apply our method to a multimodal neuroimaging dataset of 4,242 participants from the UK Biobank to evaluate the effects of whole-brain WMMI and cortical thickness on the resting-state FC. The results reveal that the WMMI on corticospinal tracts and inferior cerebellar peduncle significantly affect functional connections of sensorimotor, salience, and executive sub-networks with an average correlation of 0.81 (p<0.001).

This work presents a comparative study to numerically compute impulse approximate controls for parabolic equations with various boundary conditions. Theoretical controllability results have been recently investigated using a logarithmic convexity estimate at a single time based on a Carleman commutator approach. We propose a numerical algorithm for computing the impulse controls with minimal $L^2$-norms by adapting a penalized Hilbert Uniqueness Method (HUM) combined with a Conjugate Gradient (CG) method. We consider static boundary conditions (Dirichlet and Neumann) and dynamic boundary conditions. Some numerical experiments based on our developed algorithm are given to validate and compare the theoretical impulse controllability results.

Conformal inference is a fundamental and versatile tool that provides distribution-free guarantees for many machine learning tasks. We consider the transductive setting, where decisions are made on a test sample of $m$ new points, giving rise to $m$ conformal $p$-values. {While classical results only concern their marginal distribution, we show that their joint distribution follows a P\'olya urn model, and establish a concentration inequality for their empirical distribution function.} The results hold for arbitrary exchangeable scores, including {\it adaptive} ones that can use the covariates of the test+calibration samples at training stage for increased accuracy. We demonstrate the usefulness of these theoretical results through uniform, in-probability guarantees for two machine learning tasks of current interest: interval prediction for transductive transfer learning and novelty detection based on two-class classification.

Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples can be difficult through standard methods. Inference can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. In this paper, we develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in this threshold choice and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation. We apply our method to the well-known, troublesome example of the River Nidd dataset.

Flow-based generative models enjoy certain advantages in computing the data generation and the likelihood, and have recently shown competitive empirical performance. Compared to the accumulating theoretical studies on related score-based diffusion models, analysis of flow-based models, which are deterministic in both forward (data-to-noise) and reverse (noise-to-data) directions, remain sparse. In this paper, we provide a theoretical guarantee of generating data distribution by a progressive flow model, the so-called JKO flow model, which implements the Jordan-Kinderleherer-Otto (JKO) scheme in a normalizing flow network. Leveraging the exponential convergence of the proximal gradient descent (GD) in Wasserstein space, we prove the Kullback-Leibler (KL) guarantee of data generation by a JKO flow model to be $O(\varepsilon^2)$ when using $N \lesssim \log (1/\varepsilon)$ many JKO steps ($N$ Residual Blocks in the flow) where $\varepsilon $ is the error in the per-step first-order condition. The assumption on data density is merely a finite second moment, and the theory extends to data distributions without density and when there are inversion errors in the reverse process where we obtain KL-$W_2$ mixed error guarantees. The non-asymptotic convergence rate of the JKO-type $W_2$-proximal GD is proved for a general class of convex objective functionals that includes the KL divergence as a special case, which can be of independent interest.

A novel spatial autoregressive model for panel data is introduced, which incorporates multilayer networks and accounts for time-varying relationships. Moreover, the proposed approach allows the structural variance to evolve smoothly over time and enables the analysis of shock propagation in terms of time-varying spillover effects. The framework is applied to analyse the dynamics of international relationships among the G7 economies and their impact on stock market returns and volatilities. The findings underscore the substantial impact of cooperative interactions and highlight discernible disparities in network exposure across G7 nations, along with nuanced patterns in direct and indirect spillover effects.

We address speech enhancement based on variational autoencoders, which involves learning a speech prior distribution in the time-frequency (TF) domain. A zero-mean complex-valued Gaussian distribution is usually assumed for the generative model, where the speech information is encoded in the variance as a function of a latent variable. In contrast to this commonly used approach, we propose a weighted variance generative model, where the contribution of each spectrogram time-frame in parameter learning is weighted. We impose a Gamma prior distribution on the weights, which would effectively lead to a Student's t-distribution instead of Gaussian for speech generative modeling. We develop efficient training and speech enhancement algorithms based on the proposed generative model. Our experimental results on spectrogram auto-encoding and speech enhancement demonstrate the effectiveness and robustness of the proposed approach compared to the standard unweighted variance model.

Simulation-based inference has been popular for amortized Bayesian computation. It is typical to have more than one posterior approximation, from different inference algorithms, different architectures, or simply the randomness of initialization and stochastic gradients. With a provable asymptotic guarantee, we present a general stacking framework to make use of all available posterior approximations. Our stacking method is able to combine densities, simulation draws, confidence intervals, and moments, and address the overall precision, calibration, coverage, and bias at the same time. We illustrate our method on several benchmark simulations and a challenging cosmological inference task.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司