亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study algorithms for special cases of energy games, a class of turn-based games on graphs that show up in the quantitative analysis of reactive systems. In an energy game, the vertices of a weighted directed graph belong either to Alice or to Bob. A token is moved to a next vertex by the player controlling its current location, and its energy is changed by the weight of the edge. Given a fixed starting vertex and initial energy, Alice wins the game if the energy of the token remains nonnegative at every moment. If the energy goes below zero at some point, then Bob wins. The problem of determining the winner in an energy game lies in $\mathsf{NP} \cap \mathsf{coNP}$. It is a long standing open problem whether a polynomial time algorithm for this problem exists. We devise new algorithms for three special cases of the problem. The first two results focus on the single-player version, where either Alice or Bob controls the whole game graph. We develop an $\tilde{O}(n^\omega W^\omega)$ time algorithm for a game graph controlled by Alice, by providing a reduction to the All-Pairs Nonnegative Prefix Paths problem (APNP). Thus we study the APNP problem separately, for which we develop an $\tilde{O}(n^\omega W^\omega)$ time algorithm. For both problems, we improve over the state of the art of $\tilde O(mn)$ for small $W$. For the APNP problem, we also provide a conditional lower bound which states that there is no $O(n^{3-\epsilon})$ time algorithm for any $\epsilon > 0$, unless the APSP Hypothesis fails. For a game graph controlled by Bob, we obtain a near-linear time algorithm. Regarding our third result, we present a variant of the value iteration algorithm, and we prove that it gives an $O(mn)$ time algorithm for game graphs without negative cycles, which improves a previous upper bound.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入(ru)式系統編譯器、體系結(jie)構和綜(zong)合國際(ji)會議(yi)。 Publisher:ACM。 SIT:

In this paper, we explore a continuous modeling approach for deep-learning-based speech enhancement, focusing on the denoising process. We use a state variable to indicate the denoising process. The starting state is noisy speech and the ending state is clean speech. The noise component in the state variable decreases with the change of the state index until the noise component is 0. During training, a UNet-like neural network learns to estimate every state variable sampled from the continuous denoising process. In testing, we introduce a controlling factor as an embedding, ranging from zero to one, to the neural network, allowing us to control the level of noise reduction. This approach enables controllable speech enhancement and is adaptable to various application scenarios. Experimental results indicate that preserving a small amount of noise in the clean target benefits speech enhancement, as evidenced by improvements in both objective speech measures and automatic speech recognition performance.

This paper studies the monotonicity of equilibrium costs and equilibrium loads in nonatomic congestion games, in response to variations of the demands. The main goal is to identify conditions under which a paradoxical non-monotone behavior can be excluded. In contrast to routing games with a single commodity, where the network topology is the sole determinant factor for monotonicity, for general congestion games with multiple commodities the structure of the strategy sets plays a crucial role. We frame our study in the general setting of congestion games, with a special focus on singleton congestion games, for which we establish the monotonicity of equilibrium loads with respect to every demand. We then provide conditions for comonotonicity of the equilibrium loads, i.e., we investigate when they jointly increase or decrease after variations of the demands. We finally extend our study from singleton congestion games to the larger class of constrained series-parallel congestion games, whose structure is reminiscent of the concept of a series-parallel network.

In this paper we show how tensor networks help in developing explainability of machine learning algorithms. Specifically, we develop an unsupervised clustering algorithm based on Matrix Product States (MPS) and apply it in the context of a real use-case of adversary-generated threat intelligence. Our investigation proves that MPS rival traditional deep learning models such as autoencoders and GANs in terms of performance, while providing much richer model interpretability. Our approach naturally facilitates the extraction of feature-wise probabilities, Von Neumann Entropy, and mutual information, offering a compelling narrative for classification of anomalies and fostering an unprecedented level of transparency and interpretability, something fundamental to understand the rationale behind artificial intelligence decisions.

In this paper, we study Discretized Neural Networks (DNNs) composed of low-precision weights and activations, which suffer from either infinite or zero gradients due to the non-differentiable discrete function during training. Most training-based DNNs in such scenarios employ the standard Straight-Through Estimator (STE) to approximate the gradient w.r.t. discrete values. However, the use of STE introduces the problem of gradient mismatch, arising from perturbations in the approximated gradient. To address this problem, this paper reveals that this mismatch can be interpreted as a metric perturbation in a Riemannian manifold, viewed through the lens of duality theory. Building on information geometry, we construct the Linearly Nearly Euclidean (LNE) manifold for DNNs, providing a background for addressing perturbations. By introducing a partial differential equation on metrics, i.e., the Ricci flow, we establish the dynamical stability and convergence of the LNE metric with the $L^2$-norm perturbation. In contrast to previous perturbation theories with convergence rates in fractional powers, the metric perturbation under the Ricci flow exhibits exponential decay in the LNE manifold. Experimental results across various datasets demonstrate that our method achieves superior and more stable performance for DNNs compared to other representative training-based methods.

In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司