亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a meta-method for initializing (seeding) the $k$-means clustering algorithm called PNN-smoothing. It consists in splitting a given dataset into $J$ random subsets, clustering each of them individually, and merging the resulting clusterings with the pairwise-nearest-neighbor (PNN) method. It is a meta-method in the sense that when clustering the individual subsets any seeding algorithm can be used. If the computational complexity of that seeding algorithm is linear in the size of the data $N$ and the number of clusters $k$, PNN-smoothing is also almost linear with an appropriate choice of $J$, and quite competitive in practice. We show empirically, using several existing seeding methods and testing on several synthetic and real datasets, that this procedure results in systematically better costs. In particular, our method of enhancing $k$-means++ seeding proves superior in both effectiveness and speed compared to the popular "greedy" $k$-means++ variant. Our implementation is publicly available at //github.com/carlobaldassi/KMeansPNNSmoothing.jl.

相關內容

Implicit Neural Representations (INRs) have emerged in the last few years as a powerful tool to encode continuously a variety of different signals like images, videos, audio and 3D shapes. When applied to 3D shapes, INRs allow to overcome the fragmentation and shortcomings of the popular discrete representations used so far. Yet, considering that INRs consist in neural networks, it is not clear whether and how it may be possible to feed them into deep learning pipelines aimed at solving a downstream task. In this paper, we put forward this research problem and propose inr2vec, a framework that can compute a compact latent representation for an input INR in a single inference pass. We verify that inr2vec can embed effectively the 3D shapes represented by the input INRs and show how the produced embeddings can be fed into deep learning pipelines to solve several tasks by processing exclusively INRs.

In this paper, we study fast first-order algorithms that approximately solve linear programs (LPs). More specifically, we apply algorithms from online linear programming to offline LPs and derive algorithms that are free of any matrix multiplication. To further improve the applicability of the proposed methods, we propose a variable-duplication technique that achieves $\mathcal{O}(\sqrt{mn/K})$ optimality gap by copying each variable $K$ times. Moreover, we identify that online algorithms can be efficiently incorporated into a column generation framework for large-scale LPs. Finally, numerical experiments show that our proposed methods can be applied either as an approximate direct solver or as an initialization subroutine in frameworks of exact LP solving.

Few-shot learning for neural networks (NNs) is an important problem that aims to train NNs with a few data. The main challenge is how to avoid overfitting since over-parameterized NNs can easily overfit to such small dataset. Previous work (e.g. MAML by Finn et al. 2017) tackles this challenge by meta-learning, which learns how to learn from a few data by using various tasks. On the other hand, one conventional approach to avoid overfitting is restricting hypothesis spaces by endowing sparse NN structures like convolution layers in computer vision. However, although such manually-designed sparse structures are sample-efficient for sufficiently large datasets, they are still insufficient for few-shot learning. Then the following questions naturally arise: (1) Can we find sparse structures effective for few-shot learning by meta-learning? (2) What benefits will it bring in terms of meta-generalization? In this work, we propose a novel meta-learning approach, called Meta-ticket, to find optimal sparse subnetworks for few-shot learning within randomly initialized NNs. We empirically validated that Meta-ticket successfully discover sparse subnetworks that can learn specialized features for each given task. Due to this task-wise adaptation ability, Meta-ticket achieves superior meta-generalization compared to MAML-based methods especially with large NNs. The code is available at: //github.com/dchiji-ntt/meta-ticket

We propose in this paper efficient first/second-order time-stepping schemes for the evolutional Navier-Stokes-Nernst-Planck-Poisson equations. The proposed schemes are constructed using an auxiliary variable reformulation and sophisticated treatment of the terms coupling different equations. By introducing a dynamic equation for the auxiliary variable and reformulating the original equations into an equivalent system, we construct first- and second-order semi-implicit linearized schemes for the underlying problem. The main advantages of the proposed method are: (1) the schemes are unconditionally stable in the sense that a discrete energy keeps decay during the time stepping; (2) the concentration components of the discrete solution preserve positivity and mass conservation; (3) the delicate implementation shows that the proposed schemes can be very efficiently realized, with computational complexity close to a semi-implicit scheme. Some numerical examples are presented to demonstrate the accuracy and performance of the proposed method. As far as the best we know, this is the first second-order method which satisfies all the above properties for the Navier-Stokes-Nernst-Planck-Poisson equations.

The periodic Gaussian process (PGP) has been increasingly used to model periodic data due to its high accuracy. Yet, computing the likelihood of PGP has a high computational complexity of $\mathcal{O}\left(n^{3}\right)$ ($n$ is the data size), which hinders its wide application. To address this issue, we propose a novel circulant PGP (CPGP) model for large-scale periodic data collected at grids that are commonly seen in signal processing applications. The proposed CPGP decomposes the log-likelihood of PGP into the sum of two computationally scalable composite log-likelihoods, which do not involve any approximations. Computing the likelihood of CPGP requires only $\mathcal{O}\left(p^{2}\right)$ (or $\mathcal{O}\left(p\log p\right)$ in some special cases) time for grid observations, where the segment length $p$ is independent of and much smaller than $n$. Simulations and real case studies are presented to show the superiority of CPGP over some state-of-the-art methods, especially for applications requiring periodicity estimation. This new modeling technique can greatly advance the applicability of PGP in many areas and allow the modeling of many previously intractable problems.

The graph Laplacian is a fundamental object in the analysis of and optimization on graphs. This operator can be extended to a simplicial complex $K$ and therefore offers a way to perform ``signal processing" on $p$-(co)chains of $K$. Recently, the concept of persistent Laplacian was proposed and studied for a pair of simplicial complexes $K\hookrightarrow L$ connected by an inclusion relation, further broadening the use of Laplace-based operators. In this paper, we expand the scope of the persistent Laplacian by generalizing it to a pair of simplicial complexes connected by a simplicial map $f: K \to L$. Such simplicial map setting arises frequently, e.g., when relating a coarsened simplicial representation with an original representation, or the case when the two simplicial complexes are spanned by different point sets i.e. cases in which it does not hold that $K\subset L$. However, the simplicial map setting is more challenging than the inclusion setting since the underlying algebraic structure is more complicated. We present a natural generalization of the persistent Laplacian to the simplicial setting. To shed insight on the structure behind it, as well as to develop an algorithm to compute it, we exploit the relationship between the persistent Laplacian and the Schur complement of a matrix. A critical step is to view the Schur complement as a functorial way of restricting a self-adjoint PSD operator to a given subspace. As a consequence, we prove that persistent Betti numbers of a simplicial map can be recovered by persistent Laplacians. We then propose an algorithm for finding the matrix representations of persistent Laplacians which in turn yields a new algorithm for computing persistent Betti numbers of a simplicial map. Finally, we study the persistent Laplacian on simplicial towers under simplicial maps and establish monotonicity results for their eigenvalues.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.

A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer. This effectively decouples the meta-gradient computation from the choice of inner loop optimizer. As a result, our approach is agnostic to the choice of inner loop optimizer and can gracefully handle many gradient steps without vanishing gradients or memory constraints. Theoretically, we prove that implicit MAML can compute accurate meta-gradients with a memory footprint that is, up to small constant factors, no more than that which is required to compute a single inner loop gradient and at no overall increase in the total computational cost. Experimentally, we show that these benefits of implicit MAML translate into empirical gains on few-shot image recognition benchmarks.

Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.

北京阿比特科技有限公司