We investigate deterministic non-preemptive online scheduling with delayed commitment for total completion time minimization on parallel identical machines. In this problem, jobs arrive one-by-one and their processing times are revealed upon arrival. An online algorithm can assign a job to a machine at any time after its arrival. We neither allow preemption nor a restart of the job, that is, once started, the job occupies the assigned machine until its completion. Our objective is the minimization of the sum of the completion times of all jobs. In the more general weighted version of the problem, we multiply the completion time of a job by the individual weight of the job. We apply competitive analysis to evaluate our algorithms. We improve 25-year-old lower bounds for the competitive ratio of this problem by optimizing a simple job pattern. These lower bounds decrease with growing numbers of machines. Based on the job pattern, we develop an online algorithm which is an extension of the delayed-SPT (Shortest Processing Time first) approach to the parallel machine environment. We show that the competitive ratio is at most 1.546 for any even machine number which is a significant improvement over the best previously known competitive ratio of 1.791. For the two-machine environment, this algorithm achieves a tight competitive ratio. This is the first algorithm which optimally solves an online total completion time problem in a parallel machine environment. Finally, we give the first separation between the weighted and unweighted versions of the problem by showing that in the two-machine environment, the competitive ratio of the weighted completion time objective is strictly larger than 1.546.
In this research a continuous model for resource allocations in a queuing system is considered and a local prediction on the system behavior is developed. As a result we obtain a set of possible cases, some of which lead to quite clear optimization problems. Currently, the main result of this research direction is an algorithm delivering an explicit solution to the problem of minimization of the sum of all queues mean delays (which is not the overall mean delay) in the case of the so-called uniform steadiness. Basically, in this case we deal with convex optimization on a polytope.
With privacy legislation empowering users with the right to be forgotten, it has become essential to make a model forget about some of its training data. We explore the problem of removing any client's contribution in federated learning (FL). During FL rounds, each client performs local training to learn a model that minimizes the empirical loss on their private data. We propose to perform unlearning at the client (to be erased) by reversing the learning process, i.e., training a model to \emph{maximize} the local empirical loss. In particular, we formulate the unlearning problem as a constrained maximization problem by restricting to an $\ell_2$-norm ball around a suitably chosen reference model to help retain some knowledge learnt from the other clients' data. This allows the client to use projected gradient descent to perform unlearning. The method does neither require global access to the data used for training nor the history of the parameter updates to be stored by the aggregator (server) or any of the clients. Experiments on the MNIST dataset show that the proposed unlearning method is efficient and effective.
Various methods have been developed to combine inference across multiple sets of results for unsupervised clustering, within the ensemble and consensus clustering literature. The approach of reporting results from one `best' model out of several candidate clustering models generally ignores the uncertainty that arises from model selection, and results in inferences that are sensitive to the particular model and parameters chosen, and assumptions made, especially with small sample size or small cluster sizes. Bayesian model averaging (BMA) is a popular approach for combining results across multiple models that offers some attractive benefits in this setting, including probabilistic interpretation of the combine cluster structure and quantification of model-based uncertainty. In this work we introduce clusterBMA, a method that enables weighted model averaging across results from multiple unsupervised clustering algorithms. We use a combination of clustering internal validation criteria as a novel approximation of the posterior model probability for weighting the results from each model. From a combined posterior similarity matrix representing a weighted average of the clustering solutions across models, we apply symmetric simplex matrix factorisation to calculate final probabilistic cluster allocations. This method is implemented in an accompanying R package. We explore the performance of this approach through a case study that aims to to identify probabilistic clusters of individuals based on electroencephalography (EEG) data. We also use simulated datasets to explore the ability of the proposed technique to identify robust integrated clusters with varying levels of separations between subgroups, and with varying numbers of clusters between models.
In their seminal paper that initiated the field of algorithmic mechanism design, \citet{NR99} studied the problem of designing strategyproof mechanisms for scheduling jobs on unrelated machines aiming to minimize the makespan. They provided a strategyproof mechanism that achieves an $n$-approximation and they made the bold conjecture that this is the best approximation achievable by any deterministic strategyproof scheduling mechanism. After more than two decades and several efforts, $n$ remains the best known approximation and very recent work by \citet{CKK21} has been able to prove an $\Omega(\sqrt{n})$ approximation lower bound for all deterministic strategyproof mechanisms. This strong negative result, however, heavily depends on the fact that the performance of these mechanisms is evaluated using worst-case analysis. To overcome such overly pessimistic, and often uninformative, worst-case bounds, a surge of recent work has focused on the ``learning-augmented framework'', whose goal is to leverage machine-learned predictions to obtain improved approximations when these predictions are accurate (consistency), while also achieving near-optimal worst-case approximations even when the predictions are arbitrarily wrong (robustness). In this work, we study the classic strategic scheduling problem of~\citet{NR99} using the learning-augmented framework and give a deterministic polynomial-time strategyproof mechanism that is $6$-consistent and $2n$-robust. We thus achieve the ``best of both worlds'': an $O(1)$ consistency and an $O(n)$ robustness that asymptotically matches the best-known approximation. We then extend this result to provide more general worst-case approximation guarantees as a function of the prediction error. Finally, we complement our positive results by showing that any $1$-consistent deterministic strategyproof mechanism has unbounded robustness.
In soccer (or association football), players quickly go from heroes to zeroes, or vice-versa. Performance is not a static measure but a somewhat volatile one. Analyzing performance as a time series rather than a stationary point in time is crucial to making better decisions. This paper introduces and explores I-VAEP and O-VAEP models to evaluate actions and rate players' intention and execution. Then, we analyze these ratings over time and propose use cases to fundament our option of treating player ratings as a continuous problem. As a result, we present who were the best players and how their performance evolved, define volatility metrics to measure a player's consistency, and build a player development curve to assist decision-making.
Machine learning algorithms are increasingly used to assist human decision-making. When the goal of machine assistance is to improve the accuracy of human decisions, it might seem appealing to design ML algorithms that complement human knowledge. While neither the algorithm nor the human are perfectly accurate, one could expect that their complementary expertise might lead to improved outcomes. In this study, we demonstrate that in practice decision aids that are not complementary, but make errors similar to human ones may have their own benefits. In a series of human-subject experiments with a total of 901 participants, we study how the similarity of human and machine errors influences human perceptions of and interactions with algorithmic decision aids. We find that (i) people perceive more similar decision aids as more useful, accurate, and predictable, and that (ii) people are more likely to take opposing advice from more similar decision aids, while (iii) decision aids that are less similar to humans have more opportunities to provide opposing advice, resulting in a higher influence on people's decisions overall.
Scene text recognition (STR) has been an active research topic in computer vision for years. To tackle this challenging problem, numerous innovative methods have been successively proposed and incorporating linguistic knowledge into STR models has recently become a prominent trend. In this work, we first draw inspiration from the recent progress in Vision Transformer (ViT) to construct a conceptually simple yet powerful vision STR model, which is built upon ViT and outperforms previous state-of-the-art models for scene text recognition, including both pure vision models and language-augmented methods. To integrate linguistic knowledge, we further propose a Multi-Granularity Prediction strategy to inject information from the language modality into the model in an implicit way, i.e. , subword representations (BPE and WordPiece) widely-used in NLP are introduced into the output space, in addition to the conventional character level representation, while no independent language model (LM) is adopted. The resultant algorithm (termed MGP-STR) is able to push the performance envelop of STR to an even higher level. Specifically, it achieves an average recognition accuracy of 93.35% on standard benchmarks. Code will be released soon.
Reconstructing the causal relationships behind the phenomena we observe is a fundamental challenge in all areas of science. Discovering causal relationships through experiments is often infeasible, unethical, or expensive in complex systems. However, increases in computational power allow us to process the ever-growing amount of data that modern science generates, leading to an emerging interest in the causal discovery problem from observational data. This work evaluates the LPCMCI algorithm, which aims to find generators compatible with a multi-dimensional, highly autocorrelated time series while some variables are unobserved. We find that LPCMCI performs much better than a random algorithm mimicking not knowing anything but is still far from optimal detection. Furthermore, LPCMCI performs best on auto-dependencies, then contemporaneous dependencies, and struggles most with lagged dependencies. The source code of this project is available online.
The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.
Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.