Various methods have been developed to combine inference across multiple sets of results for unsupervised clustering, within the ensemble and consensus clustering literature. The approach of reporting results from one `best' model out of several candidate clustering models generally ignores the uncertainty that arises from model selection, and results in inferences that are sensitive to the particular model and parameters chosen, and assumptions made, especially with small sample size or small cluster sizes. Bayesian model averaging (BMA) is a popular approach for combining results across multiple models that offers some attractive benefits in this setting, including probabilistic interpretation of the combine cluster structure and quantification of model-based uncertainty. In this work we introduce clusterBMA, a method that enables weighted model averaging across results from multiple unsupervised clustering algorithms. We use a combination of clustering internal validation criteria as a novel approximation of the posterior model probability for weighting the results from each model. From a combined posterior similarity matrix representing a weighted average of the clustering solutions across models, we apply symmetric simplex matrix factorisation to calculate final probabilistic cluster allocations. This method is implemented in an accompanying R package. We explore the performance of this approach through a case study that aims to to identify probabilistic clusters of individuals based on electroencephalography (EEG) data. We also use simulated datasets to explore the ability of the proposed technique to identify robust integrated clusters with varying levels of separations between subgroups, and with varying numbers of clusters between models.
To investigate the structure of individual differences in performance on behavioral tasks, Haaf and Rouder (2017) developed a class of hierarchical Bayesian mixed models with varying levels of constraint on the individual effects. The models are then compared via Bayes factors, telling us which model best predicts the observed data. One common criticism of their method is that the observed data are assumed to be drawn from a normal distribution. However, for most cognitive tasks, the primary measure of performance is a response time, the distribution of which is well known to not be normal. In this paper, I investigate the assumption of normality for two datasets in numerical cognition. Specifically, I show that using a shifted lognormal model for the response times does not change the overall pattern of inference. Further, since the model-estimated effects are now on a logarithmic scale, the interpretation of the modeling becomes more difficult, particularly because the estimated effect is now multiplicative rather than additive. As a result, I recommend that even though response times are not normally distributed in general, the simplification afforded by the Haaf and Rouder (2017) approach provides a pragmatic approach to modeling individual differences in behavioral tasks.
A simple generative model based on a continuous-time normalizing flow between any pair of base and target probability densities is proposed. The velocity field of this flow is inferred from the probability current of a time-dependent density that interpolates between the base and the target in finite time. Unlike conventional normalizing flow inference methods based the maximum likelihood principle, which require costly backpropagation through ODE solvers, our interpolant approach leads to a simple quadratic loss for the velocity itself which is expressed in terms of expectations that are readily amenable to empirical estimation. The flow can be used to generate samples from either the base or target, and to estimate the likelihood at any time along the interpolant. In addition, the flow can be optimized to minimize the path length of the interpolant density, thereby paving the way for building optimal transport maps. The approach is also contextualized in its relation to diffusions. In particular, in situations where the base is a Gaussian density, we show that the velocity of our normalizing flow can also be used to construct a diffusion model to sample the target as well as estimating its score. This allows one to map methods based on stochastic differential equations to those using ordinary differential equations, simplifying the mechanics of the model, but capturing equivalent dynamics. Benchmarking on density estimation tasks illustrates that the learned flow can match and surpass maximum likelihood continuous flows at a fraction of the conventional ODE training costs.
Stochastic epidemic models provide an interpretable probabilistic description of the spread of a disease through a population. Yet, fitting these models to partially observed data is a notoriously difficult task due to intractability of the likelihood for many classical models. To remedy this issue, this article introduces a novel data-augmented MCMC algorithm for exact Bayesian inference under the stochastic SIR model, given only discretely observed counts of infection. In a Metropolis-Hastings step, the latent data are jointly proposed from a surrogate process carefully designed to closely resemble the SIR model, from which we can efficiently generate epidemics consistent with the observed data. This yields a method that explores the high-dimensional latent space efficiently, and scales to outbreaks with hundreds of thousands of individuals. We show that the Markov chain underlying the algorithm is uniformly ergodic, and validate its performance via thorough simulation experiments and a case study on the 2013-2015 outbreak of Ebola Haemorrhagic Fever in Western Africa.
In reinforcement learning from human feedback, it is common to optimize against a reward model trained to predict human preferences. Because the reward model is an imperfect proxy, optimizing its value too much can hinder ground truth performance, in accordance with Goodhart's law. This effect has been frequently observed, but not carefully measured due to the expense of collecting human preference data. In this work, we use a synthetic setup in which a fixed "gold-standard" reward model plays the role of humans, providing labels used to train a proxy reward model. We study how the gold reward model score changes as we optimize against the proxy reward model using either reinforcement learning or best-of-$n$ sampling. We find that this relationship follows a different functional form depending on the method of optimization, and that in both cases its coefficients scale smoothly with the number of reward model parameters. We also study the effect on this relationship of the size of the reward model dataset, the number of reward model and policy parameters, and the coefficient of the KL penalty added to the reward in the reinforcement learning setup. We explore the implications of these empirical results for theoretical considerations in AI alignment.
We derive normal approximation results for a class of stabilizing functionals of binomial or Poisson point process, that are not necessarily expressible as sums of certain score functions. Our approach is based on a flexible notion of the add-one cost operator, which helps one to deal with the second-order cost operator via suitably appropriate first-order operators. We combine this flexible notion with the theory of strong stabilization to establish our results. We illustrate the applicability of our results by establishing normal approximation results for certain geometric and topological statistics arising frequently in practice. Several existing results also emerge as special cases of our approach.
High-dimensional matrix-variate time series data are becoming widely available in many scientific fields, such as economics, biology, and meteorology. To achieve significant dimension reduction while preserving the intrinsic matrix structure and temporal dynamics in such data, Wang et al. (2017) proposed a matrix factor model that is shown to provide effective analysis. In this paper, we establish a general framework for incorporating domain or prior knowledge in the matrix factor model through linear constraints. The proposed framework is shown to be useful in achieving parsimonious parameterization, facilitating interpretation of the latent matrix factor, and identifying specific factors of interest. Fully utilizing the prior-knowledge-induced constraints results in more efficient and accurate modeling, inference, dimension reduction as well as a clear and better interpretation of the results. In this paper, constrained, multi-term, and partially constrained factor models for matrix-variate time series are developed, with efficient estimation procedures and their asymptotic properties. We show that the convergence rates of the constrained factor loading matrices are much faster than those of the conventional matrix factor analysis under many situations. Simulation studies are carried out to demonstrate the finite-sample performance of the proposed method and its associated asymptotic properties. We illustrate the proposed model with three applications, where the constrained matrix-factor models outperform their unconstrained counterparts in the power of variance explanation under the out-of-sample 10-fold cross-validation setting.
Though learning has become a core component of modern information processing, there is now ample evidence that it can lead to biased, unsafe, and prejudiced systems. The need to impose requirements on learning is therefore paramount, especially as it reaches critical applications in social, industrial, and medical domains. However, the non-convexity of most modern statistical problems is only exacerbated by the introduction of constraints. Whereas good unconstrained solutions can often be learned using empirical risk minimization, even obtaining a model that satisfies statistical constraints can be challenging. All the more so, a good one. In this paper, we overcome this issue by learning in the empirical dual domain, where constrained statistical learning problems become unconstrained and deterministic. We analyze the generalization properties of this approach by bounding the empirical duality gap -- i.e., the difference between our approximate, tractable solution and the solution of the original (non-convex) statistical problem -- and provide a practical constrained learning algorithm. These results establish a constrained counterpart to classical learning theory, enabling the explicit use of constraints in learning. We illustrate this theory and algorithm in rate-constrained learning applications arising in fairness and adversarial robustness.
Existing deep clustering methods rely on either contrastive or non-contrastive representation learning for downstream clustering task. Contrastive-based methods thanks to negative pairs learn uniform representations for clustering, in which negative pairs, however, may inevitably lead to the class collision issue and consequently compromise the clustering performance. Non-contrastive-based methods, on the other hand, avoid class collision issue, but the resulting non-uniform representations may cause the collapse of clustering. To enjoy the strengths of both worlds, this paper presents a novel end-to-end deep clustering method with prototype scattering and positive sampling, termed ProPos. Specifically, we first maximize the distance between prototypical representations, named prototype scattering loss, which improves the uniformity of representations. Second, we align one augmented view of instance with the sampled neighbors of another view -- assumed to be truly positive pair in the embedding space -- to improve the within-cluster compactness, termed positive sampling alignment. The strengths of ProPos are avoidable class collision issue, uniform representations, well-separated clusters, and within-cluster compactness. By optimizing ProPos in an end-to-end expectation-maximization framework, extensive experimental results demonstrate that ProPos achieves competing performance on moderate-scale clustering benchmark datasets and establishes new state-of-the-art performance on large-scale datasets. Source code is available at \url{//github.com/Hzzone/ProPos}.
In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.
Clustering is one of the most fundamental and wide-spread techniques in exploratory data analysis. Yet, the basic approach to clustering has not really changed: a practitioner hand-picks a task-specific clustering loss to optimize and fit the given data to reveal the underlying cluster structure. Some types of losses---such as k-means, or its non-linear version: kernelized k-means (centroid based), and DBSCAN (density based)---are popular choices due to their good empirical performance on a range of applications. Although every so often the clustering output using these standard losses fails to reveal the underlying structure, and the practitioner has to custom-design their own variation. In this work we take an intrinsically different approach to clustering: rather than fitting a dataset to a specific clustering loss, we train a recurrent model that learns how to cluster. The model uses as training pairs examples of datasets (as input) and its corresponding cluster identities (as output). By providing multiple types of training datasets as inputs, our model has the ability to generalize well on unseen datasets (new clustering tasks). Our experiments reveal that by training on simple synthetically generated datasets or on existing real datasets, we can achieve better clustering performance on unseen real-world datasets when compared with standard benchmark clustering techniques. Our meta clustering model works well even for small datasets where the usual deep learning models tend to perform worse.