亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Characterizing the sensing and communication performance tradeoff in integrated sensing and communication (ISAC) systems is challenging in the applications of learning-based human motion recognition. This is because of the large experimental datasets and the black-box nature of deep neural networks. This paper presents SDP3, a Simulation-Driven Performance Predictor and oPtimizer, which consists of SDP3 data simulator, SDP3 performance predictor and SDP3 performance optimizer. Specifically, the SDP3 data simulator generates vivid wireless sensing datasets in a virtual environment, the SDP3 performance predictor predicts the sensing performance based on the function regression method, and the SDP3 performance optimizer investigates the sensing and communication performance tradeoff analytically. It is shown that the simulated sensing dataset matches the experimental dataset very well in the motion recognition accuracy. By leveraging SDP3, it is found that the achievable region of recognition accuracy and communication throughput consists of a communication saturation zone, a sensing saturation zone, and a communication-sensing adversarial zone, of which the desired balanced performance for ISAC systems lies in the third one.

相關內容

This paper considers information-theoretic models for integrated sensing and communication (ISAC) over multi-access channels (MAC) and device-to-device (D2D) communication. The models are general and include as special cases scenarios with and without perfect or imperfect state-information at the MAC receiver as well as causal state-information at the D2D terminals. For both setups, we propose collaborative sensing ISAC schemes where terminals not only convey data to the other terminals but also state-information that they extract from their previous observations. This state-information can be exploited at the other terminals to improve their sensing performances. Indeed, as we show through examples, our schemes improve over previous non-collaborative schemes in terms of their achievable rate-distortion tradeoffs. For D2D we propose two schemes, one where compression of state information is separated from channel coding and one where it is integrated via a hybrid coding approach.

Supervised learning of image classifiers distills human knowledge into a parametric model through pairs of images and corresponding labels (X,Y). We argue that this simple and widely used representation of human knowledge neglects rich auxiliary information from the annotation procedure, such as the time-series of mouse traces and clicks left after image selection. Our insight is that such annotation byproducts Z provide approximate human attention that weakly guides the model to focus on the foreground cues, reducing spurious correlations and discouraging shortcut learning. To verify this, we create ImageNet-AB and COCO-AB. They are ImageNet and COCO training sets enriched with sample-wise annotation byproducts, collected by replicating the respective original annotation tasks. We refer to the new paradigm of training models with annotation byproducts as learning using annotation byproducts (LUAB). We show that a simple multitask loss for regressing Z together with Y already improves the generalisability and robustness of the learned models. Compared to the original supervised learning, LUAB does not require extra annotation costs. ImageNet-AB and COCO-AB are at //github.com/naver-ai/NeglectedFreeLunch.

Classic and deep generalized canonical correlation analysis (GCCA) algorithms seek low-dimensional common representations of data entities from multiple ``views'' (e.g., audio and image) using linear transformations and neural networks, respectively. When the views are acquired and stored at different computing agents (e.g., organizations and edge devices) and data sharing is undesired due to privacy or communication cost considerations, federated learning-based GCCA is well-motivated. In federated learning, the views are kept locally at the agents and only derived, limited information exchange with a central server is allowed. However, applying existing GCCA algorithms onto such federated learning settings may incur prohibitively high communication overhead. This work puts forth a communication-efficient federated learning framework for both linear and deep GCCA under the maximum variance (MAX-VAR) formulation. The overhead issue is addressed by aggressively compressing (via quantization) the exchanging information between the computing agents and a central controller. Compared to the unquantized version, our empirical study shows that the proposed algorithm enjoys a substantial reduction of communication overheads with virtually no loss in accuracy and convergence speed. Rigorous convergence analyses are also presented, which is a nontrivial effort. Generic federated optimization results do not cover the special problem structure of GCCA. Our result shows that the proposed algorithms for both linear and deep GCCA converge to critical points at a sublinear rate, even under heavy quantization and stochastic approximations. In addition, in the linear MAX-VAR case, the quantized algorithm approaches a global optimum in a geometric rate under reasonable conditions. Synthetic and real-data experiments are used to showcase the effectiveness of the proposed approach.

Recently, graph pre-training has attracted wide research attention, which aims to learn transferable knowledge from unlabeled graph data so as to improve downstream performance. Despite these recent attempts, the negative transfer is a major issue when applying graph pre-trained models to downstream tasks. Existing works made great efforts on the issue of what to pre-train and how to pre-train by designing a number of graph pre-training and fine-tuning strategies. However, there are indeed cases where no matter how advanced the strategy is, the "pre-train and fine-tune" paradigm still cannot achieve clear benefits. This paper introduces a generic framework W2PGNN to answer the crucial question of when to pre-train (i.e., in what situations could we take advantage of graph pre-training) before performing effortful pre-training or fine-tuning. We start from a new perspective to explore the complex generative mechanisms from the pre-training data to downstream data. In particular, W2PGNN first fits the pre-training data into graphon bases, each element of graphon basis (i.e., a graphon) identifies a fundamental transferable pattern shared by a collection of pre-training graphs. All convex combinations of graphon bases give rise to a generator space, from which graphs generated form the solution space for those downstream data that can benefit from pre-training. In this manner, the feasibility of pre-training can be quantified as the generation probability of the downstream data from any generator in the generator space. W2PGNN provides three broad applications, including providing the application scope of graph pre-trained models, quantifying the feasibility of performing pre-training, and helping select pre-training data to enhance downstream performance. We give a theoretically sound solution for the first application and extensive empirical justifications for the latter two applications.

In this paper, we investigate the coexistence of a single cell massive MIMO communication system with a MIMO radar. We consider the case where the massive MIMO BS is aware of the radar's existence and treats it as a non-serviced user, but the radar is unaware of the communication system's existence and treats the signals transmitted by both the BS and the communication users as noise. Using results from random matrix theory, we derive the rates achievable by the communication system and the radar. We then use these expressions to obtain the achievable rate regions for the proposed joint radar and communications system. We observe that due to the availability of a large number of degrees of freedom at the mMIMO BS, results in minimal interference even without co-design. Finally we corroborate our findings via detailed numerical simulations and verify the validity of the results derived previously under different settings.

Machine learning is gaining growing momentum in various recent models for the dynamic analysis of information flows in data communications networks. These preliminary models often rely on off-the-shelf learning models to predict from historical statistics while disregarding the physics governing the generating behaviors of these flows. This paper instead introduces Flow Neural Network (FlowNN) to improve the feature representation with learned physical bias. This is implemented by an induction layer, working upon the embedding layer, to impose the physics connected data correlations, and a self-supervised learning strategy with stop-gradient to make the learned physics universal. For the short-timescale network prediction tasks, FlowNN achieves 17% - 71% of loss decrease than the state-of-the-art baselines on both synthetic and real-world networking datasets, which shows the strength of this new approach.

Small on-device models have been successfully trained with user-level differential privacy (DP) for next word prediction and image classification tasks in the past. However, existing methods can fail when directly applied to learn embedding models using supervised training data with a large class space. To achieve user-level DP for large image-to-embedding feature extractors, we propose DP-FedEmb, a variant of federated learning algorithms with per-user sensitivity control and noise addition, to train from user-partitioned data centralized in the datacenter. DP-FedEmb combines virtual clients, partial aggregation, private local fine-tuning, and public pretraining to achieve strong privacy utility trade-offs. We apply DP-FedEmb to train image embedding models for faces, landmarks and natural species, and demonstrate its superior utility under same privacy budget on benchmark datasets DigiFace, EMNIST, GLD and iNaturalist. We further illustrate it is possible to achieve strong user-level DP guarantees of $\epsilon<4$ while controlling the utility drop within 5%, when millions of users can participate in training.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

北京阿比特科技有限公司