亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Small on-device models have been successfully trained with user-level differential privacy (DP) for next word prediction and image classification tasks in the past. However, existing methods can fail when directly applied to learn embedding models using supervised training data with a large class space. To achieve user-level DP for large image-to-embedding feature extractors, we propose DP-FedEmb, a variant of federated learning algorithms with per-user sensitivity control and noise addition, to train from user-partitioned data centralized in the datacenter. DP-FedEmb combines virtual clients, partial aggregation, private local fine-tuning, and public pretraining to achieve strong privacy utility trade-offs. We apply DP-FedEmb to train image embedding models for faces, landmarks and natural species, and demonstrate its superior utility under same privacy budget on benchmark datasets DigiFace, EMNIST, GLD and iNaturalist. We further illustrate it is possible to achieve strong user-level DP guarantees of $\epsilon<4$ while controlling the utility drop within 5%, when millions of users can participate in training.

相關內容

Federated learning (FL) is a distributed machine learning strategy that enables participants to collaborate and train a shared model without sharing their individual datasets. Privacy and fairness are crucial considerations in FL. While FL promotes privacy by minimizing the amount of user data stored on central servers, it still poses privacy risks that need to be addressed. Industry standards such as differential privacy, secure multi-party computation, homomorphic encryption, and secure aggregation protocols are followed to ensure privacy in FL. Fairness is also a critical issue in FL, as models can inherit biases present in local datasets, leading to unfair predictions. Balancing privacy and fairness in FL is a challenge, as privacy requires protecting user data while fairness requires representative training data. This paper presents a "Fair Differentially Private Federated Learning Framework" that addresses the challenges of generating a fair global model without validation data and creating a globally private differential model. The framework employs clipping techniques for biased model updates and Gaussian mechanisms for differential privacy. The paper also reviews related works on privacy and fairness in FL, highlighting recent advancements and approaches to mitigate bias and ensure privacy. Achieving privacy and fairness in FL requires careful consideration of specific contexts and requirements, taking into account the latest developments in industry standards and techniques.

Training an ensemble of diverse sub-models has been empirically demonstrated as an effective strategy for improving the adversarial robustness of deep neural networks. However, current ensemble training methods for image recognition typically encode image labels using one-hot vectors, which overlook dependency relationships between the labels. In this paper, we propose a novel adversarial en-semble training approach that jointly learns the label dependencies and member models. Our approach adaptively exploits the learned label dependencies to pro-mote diversity among the member models. We evaluate our approach on widely used datasets including MNIST, FashionMNIST, and CIFAR-10, and show that it achieves superior robustness against black-box attacks compared to state-of-the-art methods. Our code is available at //github.com/ZJLAB-AMMI/LSD.

Electronic Health Records (EHR) data contains medical records such as diagnoses, medications, procedures, and treatments of patients. This data is often considered sensitive medical information. Therefore, the EHR data from the medical centers often cannot be shared, making it difficult to create prediction models using multi-center EHR data, which is essential for such models' robustness and generalizability. Federated Learning (FL) is an algorithmic approach that allows learning a shared model using data in multiple locations without the need to store all data in a central place. An example of a prediction model's task is to predict future diseases. More specifically, the model needs to predict patient's next visit diagnoses, based on current and previous clinical data. Such a prediction model can support care providers in making clinical decisions and even provide preventive treatment. We propose a federated learning approach for learning medical concepts embedding. This pre-trained model can be used for fine-tuning for specific downstream tasks. Our approach is based on an embedding model like BEHRT, a deep neural sequence transduction model for EHR. We train using federated learning, both the Masked Language Modeling (MLM) and the next visit downstream model. We demonstrate our approach on the MIMIC-IV dataset. We compare the performance of a model trained with FL against a model trained on centralized data. We find that our federated learning approach reaches very close to the performance of a centralized model, and it outperforms local models in terms of average precision. We also show that pre-trained MLM improves the model's average precision performance in the next visit prediction task, compared to an MLM model without pre-training. Our code is available at //github.com/nadavlab/FederatedBEHRT.

The Stable Diffusion model is a prominent text-to-image generation model that relies on a text prompt as its input, which is encoded using the Contrastive Language-Image Pre-Training (CLIP). However, text prompts have limitations when it comes to incorporating implicit information from reference images. Existing methods have attempted to address this limitation by employing expensive training procedures involving millions of training samples for image-to-image generation. In contrast, this paper demonstrates that the CLIP model, as utilized in Stable Diffusion, inherently possesses the ability to instantaneously convert images into text prompts. Such an image-to-prompt conversion can be achieved by utilizing a linear projection matrix that is calculated in a closed form. Moreover, the paper showcases that this capability can be further enhanced by either utilizing a small amount of similar-domain training data (approximately 100 images) or incorporating several online training steps (around 30 iterations) on the reference images. By leveraging these approaches, the proposed method offers a simple and flexible solution to bridge the gap between images and text prompts. This methodology can be applied to various tasks such as image variation and image editing, facilitating more effective and seamless interaction between images and textual prompts.

The availability and accessibility of diffusion models (DMs) have significantly increased in recent years, making them a popular tool for analyzing and predicting the spread of information, behaviors, or phenomena through a population. Particularly, text-to-image diffusion models (e.g., DALLE 2 and Latent Diffusion Models (LDMs) have gained significant attention in recent years for their ability to generate high-quality images and perform various image synthesis tasks. Despite their widespread adoption in many fields, DMs are often susceptible to various intellectual property violations. These can include not only copyright infringement but also more subtle forms of misappropriation, such as unauthorized use or modification of the model. Therefore, DM owners must be aware of these potential risks and take appropriate steps to protect their models. In this work, we are the first to protect the intellectual property of DMs. We propose a simple but effective watermarking scheme that injects the watermark into the DMs and can be verified by the pre-defined prompts. In particular, we propose two different watermarking methods, namely NAIVEWM and FIXEDWM. The NAIVEWM method injects the watermark into the LDMs and activates it using a prompt containing the watermark. On the other hand, the FIXEDWM is considered more advanced and stealthy compared to the NAIVEWM, as it can only activate the watermark when using a prompt containing a trigger in a fixed position. We conducted a rigorous evaluation of both approaches, demonstrating their effectiveness in watermark injection and verification with minimal impact on the LDM's functionality.

Model selection is a strategy aimed at creating accurate and robust models. A key challenge in designing these algorithms is identifying the optimal model for classifying any particular input sample. This paper addresses this challenge and proposes a novel framework for differentiable model selection integrating machine learning and combinatorial optimization. The framework is tailored for ensemble learning, a strategy that combines the outputs of individually pre-trained models, and learns to select appropriate ensemble members for a particular input sample by transforming the ensemble learning task into a differentiable selection program trained end-to-end within the ensemble learning model. Tested on various tasks, the proposed framework demonstrates its versatility and effectiveness, outperforming conventional and advanced consensus rules across a variety of settings and learning tasks.

Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation owing to its strong potential in capturing underlying data statistics while preserving data privacy. However, in cases of practical data heterogeneity among FL clients, existing FL frameworks still exhibit deficiency in capturing the overall feature properties of local client data that exhibit disparate distributions. In response, generative adversarial networks (GANs) have recently been exploited in FL to address data heterogeneity since GANs can be integrated for data regeneration without exposing original raw data. Despite some successes, existing GAN-related FL frameworks often incur heavy communication cost and also elicit other privacy concerns, which limit their applications in real scenarios. To this end, this work proposes a novel FL framework that requires only partial GAN model sharing. Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions across clients and to strengthen privacy preservation at reduced communication cost, especially over wireless networks. Our analysis demonstrates the convergence and privacy benefits of the proposed PS-FEdGAN framework. Through experimental results based on several well-known benchmark datasets, our proposed PS-FedGAN shows great promise to tackle FL under non-IID client data distributions, while securing data privacy and lowering communication overhead.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司