In this paper, we propose a new zero order optimization method called minibatch stochastic three points (MiSTP) method to solve an unconstrained minimization problem in a setting where only an approximation of the objective function evaluation is possible. It is based on the recently proposed stochastic three points (STP) method (Bergou et al., 2020). At each iteration, MiSTP generates a random search direction in a similar manner to STP, but chooses the next iterate based solely on the approximation of the objective function rather than its exact evaluations. We also analyze our method's complexity in the nonconvex and convex cases and evaluate its performance on multiple machine learning tasks.
Quantized constant envelope (QCE) precoding, a new transmission scheme that only discrete QCE transmit signals are allowed at each antenna, has gained growing research interests due to its ability of reducing the hardware cost and the energy consumption of massive multiple-input multiple-output (MIMO) systems. However, the discrete nature of QCE transmit signals greatly complicates the precoding design. In this paper, we consider the QCE precoding problem for a massive MIMO system with phase shift keying (PSK) modulation and develop an efficient approach for solving the constructive interference (CI) based problem formulation. Our approach is based on a custom-designed (continuous) penalty model that is equivalent to the original discrete problem. Specifically, the penalty model relaxes the discrete QCE constraint and penalizes it in the objective with a negative $\ell_2$-norm term, which leads to a non-smooth non-convex optimization problem. To tackle it, we resort to our recently proposed alternating optimization (AO) algorithm. We show that the AO algorithm admits closed-form updates at each iteration when applied to our problem and thus can be efficiently implemented. Simulation results demonstrate the superiority of the proposed approach over the existing algorithms.
Distributed sparse learning for high dimensional parameters has attached vast attentions due to its wide application in prediction and classification in diverse fields of machine learning. Existing distributed sparse regression usually takes an average way to ensemble the local results produced by distributed machines, which enjoys low communication cost but is statistical inefficient. To address this problem, we proposed a new Weighted AVerage Estimate (WAVE) for high-dimensional regressions. The WAVE is a solution to a weighted least-square loss with an adaptive $L_1$ penalty, in which the $L_1$ penalty controls the sparsity and the weight promotes the statistical efficiency. It can not only achieve a balance between the statistical and communication efficiency, but also reach a faster rate than the average estimate with a very low communication cost, requiring the local machines delivering two vectors to the master merely. The consistency of parameter estimation and model selection is also provided, which guarantees the safety of using WAVE in the distributed system. The consistency also provides a way to make hypothisis testing on the parameter. Moreover, WAVE is robust to the heterogeneous distributed samples with varied mean and covariance across machines, which has been verified by the asymptotic normality under such conditions. Other competitors, however, do not own this property. The effectiveness of WAVE is further illustrated by extensive numerical studies and real data analyses.
We consider optimization problems in which the goal is find a $k$-dimensional subspace of $\mathbb{R}^n$, $k<<n$, which minimizes a convex and smooth loss. Such problems generalize the fundamental task of principal component analysis (PCA) to include robust and sparse counterparts, and logistic PCA for binary data, among others. This problem could be approached either via nonconvex gradient methods with highly-efficient iterations, but for which arguing about fast convergence to a global minimizer is difficult or, via a convex relaxation for which arguing about convergence to a global minimizer is straightforward, but the corresponding methods are often inefficient in high dimensions. In this work we bridge these two approaches under a strict complementarity assumption, which in particular implies that the optimal solution to the convex relaxation is unique and is also the optimal solution to the original nonconvex problem. Our main result is a proof that a natural nonconvex gradient method which is \textit{SVD-free} and requires only a single QR-factorization of an $n\times k$ matrix per iteration, converges locally with a linear rate. We also establish linear convergence results for the nonconvex projected gradient method, and the Frank-Wolfe method when applied to the convex relaxation.
Stochastic versions of proximal methods have gained much attention in statistics and machine learning. These algorithms tend to admit simple, scalable forms, and enjoy numerical stability via implicit updates. In this work, we propose and analyze a stochastic version of the recently proposed proximal distance algorithm, a class of iterative optimization methods that recover a desired constrained estimation problem as a penalty parameter $\rho \rightarrow \infty$. By uncovering connections to related stochastic proximal methods and interpreting the penalty parameter as the learning rate, we justify heuristics used in practical manifestations of the proximal distance method, establishing their convergence guarantees for the first time. Moreover, we extend recent theoretical devices to establish finite error bounds and a complete characterization of convergence rates regimes. We validate our analysis via a thorough empirical study, also showing that unsurprisingly, the proposed method outpaces batch versions on popular learning tasks.
In this paper we discuss an application of Stochastic Approximation to statistical estimation of high-dimensional sparse parameters. The proposed solution reduces to resolving a penalized stochastic optimization problem on each stage of a multistage algorithm; each problem being solved to a prescribed accuracy by the non-Euclidean Composite Stochastic Mirror Descent (CSMD) algorithm. Assuming that the problem objective is smooth and quadratically minorated and stochastic perturbations are sub-Gaussian, our analysis prescribes the method parameters which ensure fast convergence of the estimation error (the radius of a confidence ball of a given norm around the approximate solution). This convergence is linear during the first "preliminary" phase of the routine and is sublinear during the second "asymptotic" phase. We consider an application of the proposed approach to sparse Generalized Linear Regression problem. In this setting, we show that the proposed algorithm attains the optimal convergence of the estimation error under weak assumptions on the regressor distribution. We also present a numerical study illustrating the performance of the algorithm on high-dimensional simulation data.
We propose and analyze exact and inexact regularized Newton-type methods for finding a global saddle point of a \textit{convex-concave} unconstrained min-max optimization problem. Compared to their first-order counterparts, investigations of second-order methods for min-max optimization are relatively limited, as obtaining global rates of convergence with second-order information is much more involved. In this paper, we highlight how second-order information can be used to speed up the dynamics of dual extrapolation methods {despite inexactness}. Specifically, we show that the proposed algorithms generate iterates that remain within a bounded set and the averaged iterates converge to an $\epsilon$-saddle point within $O(\epsilon^{-2/3})$ iterations in terms of a gap function. Our algorithms match the theoretically established lower bound in this context and our analysis provides a simple and intuitive convergence analysis for second-order methods without requiring any compactness assumptions. Finally, we present a series of numerical experiments on synthetic and real data that demonstrate the efficiency of the proposed algorithms.
We propose a stochastic first-order trust-region method with inexact function and gradient evaluations for solving finite-sum minimization problems. Using a suitable reformulation of the given problem, our method combines the inexact restoration approach for constrained optimization with the trust-region procedure and random models. Differently from other recent stochastic trust-region schemes, our proposed algorithm improves feasibility and optimality in a modular way. We provide the expected number of iterations for reaching a near-stationary point by imposing some probability accuracy requirements on random functions and gradients which are, in general, less stringent than the corresponding ones in literature. We validate the proposed algorithm on some nonconvex optimization problems arising in binary classification and regression, showing that it performs well in terms of cost and accuracy, and allows to reduce the burdensome tuning of the hyper-parameters involved.
One common approach to detecting change-points is minimizing a cost function over possible numbers and locations of change-points. The framework includes several well-established procedures, such as the penalized likelihood and minimum description length. Such an approach requires finding the cost value repeatedly over different segments of the data set, which can be time-consuming when (i) the data sequence is long and (ii) obtaining the cost value involves solving a non-trivial optimization problem. This paper introduces a new sequential method (SE) that can be coupled with gradient descent (SeGD) and quasi-Newton's method (SeN) to find the cost value effectively. The core idea is to update the cost value using the information from previous steps without re-optimizing the objective function. The new method is applied to change-point detection in generalized linear models and penalized regression. Numerical studies show that the new approach can be orders of magnitude faster than the Pruned Exact Linear Time (PELT) method without sacrificing estimation accuracy.
A difficulty in MSE estimation occurs because we do not specify a full distribution for the survey weights. This obfuscates the use of fully parametric bootstrap procedures. To overcome this challenge, we develop a novel MSE estimator. We estimate the leading term in the MSE, which is the MSE of the best predictor (constructed with the true parameters), using the same simulated samples used to construct the basic predictor. We then exploit the asymptotic normal distribution of the parameter estimators to estimate the second term in the MSE, which reflects variability in the estimated parameters. We incorporate a correction for the bias of the estimator of the leading term without the use of computationally intensive double-bootstrap procedures. We further develop calibrated prediction intervals that rely less on normal theory than standard prediction intervals. We empirically demonstrate the validity of the proposed procedures through extensive simulation studies. We apply the methods to predict several functions of sheet and rill erosion for Iowa counties using data from a complex agricultural survey.
Machine learning systems are often applied to data that is drawn from a different distribution than the training distribution. Recent work has shown that for a variety of classification and signal reconstruction problems, the out-of-distribution performance is strongly linearly correlated with the in-distribution performance. If this relationship or more generally a monotonic one holds, it has important consequences. For example, it allows to optimize performance on one distribution as a proxy for performance on the other. In this paper, we study conditions under which a monotonic relationship between the performances of a model on two distributions is expected. We prove an exact asymptotic linear relation for squared error and a monotonic relation for misclassification error for ridge-regularized general linear models under covariate shift, as well as an approximate linear relation for linear inverse problems.