We introduce EmphAssess, a prosodic benchmark designed to evaluate the capability of speech-to-speech models to encode and reproduce prosodic emphasis. We apply this to two tasks: speech resynthesis and speech-to-speech translation. In both cases, the benchmark evaluates the ability of the model to encode emphasis in the speech input and accurately reproduce it in the output, potentially across a change of speaker and language. As part of the evaluation pipeline, we introduce EmphaClass, a new model that classifies emphasis at the frame or word level.
ExaRanker recently introduced an approach to training information retrieval (IR) models, incorporating natural language explanations as additional labels. The method addresses the challenge of limited labeled examples, leading to improvements in the effectiveness of IR models. However, the initial results were based on proprietary language models such as GPT-3.5, which posed constraints on dataset size due to its cost and data privacy. In this paper, we introduce ExaRanker-Open, where we adapt and explore the use of open-source language models to generate explanations. The method has been tested using different LLMs and datasets sizes to better comprehend the effective contribution of data augmentation. Our findings reveal that incorporating explanations consistently enhances neural rankers, with benefits escalating as the LLM size increases. Notably, the data augmentation method proves advantageous even with large datasets, as evidenced by ExaRanker surpassing the target baseline by 0.6 nDCG@10 points in our study. To encourage further advancements by the research community, we have open-sourced both the code and datasets at //github.com/unicamp-dl/ExaRanker.
Large language models (LLMs) have made significant advancements in code-related tasks, yet many LLMs treat code as simple sequences, neglecting its structured nature. We introduce AST-T5, a novel pretraining paradigm that leverages the Abstract Syntax Tree (AST) for enhanced code generation, transpilation, and understanding. Using dynamic programming, our AST-Aware Segmentation retains code structure, while our AST-Aware Span Corruption objective equips the model to reconstruct various code structures. Unlike other models, AST-T5 avoids intricate program analyses or architectural changes, so it integrates seamlessly with any encoder-decoder Transformer. Evaluations show that AST-T5 consistently outperforms similar-sized LMs across various code-related tasks. Structure-awareness makes AST-T5 particularly powerful in code-to-code tasks, surpassing CodeT5 by 2 points in exact match score for the Bugs2Fix task and by 3 points in exact match score for Java-C# Transpilation in CodeXGLUE. Our code and model are publicly available at //github.com/gonglinyuan/ast_t5.
Diffusion models may be viewed as hierarchical variational autoencoders (VAEs) with two improvements: parameter sharing for the conditional distributions in the generative process and efficient computation of the loss as independent terms over the hierarchy. We consider two changes to the diffusion model that retain these advantages while adding flexibility to the model. Firstly, we introduce a data- and depth-dependent mean function in the diffusion process, which leads to a modified diffusion loss. Our proposed framework, DiffEnc, achieves a statistically significant improvement in likelihood on CIFAR-10. Secondly, we let the ratio of the noise variance of the reverse encoder process and the generative process be a free weight parameter rather than being fixed to 1. This leads to theoretical insights: For a finite depth hierarchy, the evidence lower bound (ELBO) can be used as an objective for a weighted diffusion loss approach and for optimizing the noise schedule specifically for inference. For the infinite-depth hierarchy, on the other hand, the weight parameter has to be 1 to have a well-defined ELBO.
Referring expression segmentation (RES), a task that involves localizing specific instance-level objects based on free-form linguistic descriptions, has emerged as a crucial frontier in human-AI interaction. It demands an intricate understanding of both visual and textual contexts and often requires extensive training data. This paper introduces RESMatch, the first semi-supervised learning (SSL) approach for RES, aimed at reducing reliance on exhaustive data annotation. Extensive validation on multiple RES datasets demonstrates that RESMatch significantly outperforms baseline approaches, establishing a new state-of-the-art. Although existing SSL techniques are effective in image segmentation, we find that they fall short in RES. Facing the challenges including the comprehension of free-form linguistic descriptions and the variability in object attributes, RESMatch introduces a trifecta of adaptations: revised strong perturbation, text augmentation, and adjustments for pseudo-label quality and strong-weak supervision. This pioneering work lays the groundwork for future research in semi-supervised learning for referring expression segmentation.
We introduce Edu-ConvoKit, an open-source library designed to handle pre-processing, annotation and analysis of conversation data in education. Resources for analyzing education conversation data are scarce, making the research challenging to perform and therefore hard to access. We address these challenges with Edu-ConvoKit. Edu-ConvoKit is open-source (//github.com/stanfordnlp/edu-convokit ), pip-installable (//pypi.org/project/edu-convokit/ ), with comprehensive documentation (//edu-convokit.readthedocs.io/en/latest/ ). Our demo video is available at: //youtu.be/zdcI839vAko?si=h9qlnl76ucSuXb8- . We include additional resources, such as Colab applications of Edu-ConvoKit to three diverse education datasets and a repository of Edu-ConvoKit related papers, that can be found in our GitHub repository.
Prompt design plays a crucial role in shaping the efficacy of ChatGPT, influencing the model's ability to extract contextually accurate responses. Thus, optimal prompt construction is essential for maximizing the utility and performance of ChatGPT. However, sub-optimal prompt design may necessitate iterative refinement, as imprecise or ambiguous instructions can lead to undesired responses from ChatGPT. Existing studies explore several prompt patterns and strategies to improve the relevance of responses generated by ChatGPT. However, the exploration of constraints that necessitate the submission of multiple prompts is still an unmet attempt. In this study, our contributions are twofold. First, we attempt to uncover gaps in prompt design that demand multiple iterations. In particular, we manually analyze 686 prompts that were submitted to resolve issues related to Java and Python programming languages and identify eleven prompt design gaps (e.g., missing specifications). Such gap exploration can enhance the efficacy of single prompts in ChatGPT. Second, we attempt to reproduce the ChatGPT response by consolidating multiple prompts into a single one. We can completely consolidate prompts with four gaps (e.g., missing context) and partially consolidate prompts with three gaps (e.g., additional functionality). Such an effort provides concrete evidence to users to design more optimal prompts mitigating these gaps. Our study findings and evidence can - (a) save users time, (b) reduce costs, and (c) increase user satisfaction.
Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.
The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.
Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.