The growing interest in intelligent services and privacy protection for mobile devices has given rise to the widespread application of federated learning in Multi-access Edge Computing (MEC). Diverse user behaviors call for personalized services with heterogeneous Machine Learning (ML) models on different devices. Federated Multi-task Learning (FMTL) is proposed to train related but personalized ML models for different devices, whereas previous works suffer from excessive communication overhead during training and neglect the model heterogeneity among devices in MEC. Introducing knowledge distillation into FMTL can simultaneously enable efficient communication and model heterogeneity among clients, whereas existing methods rely on a public dataset, which is impractical in reality. To tackle this dilemma, Federated MultI-task Distillation for Multi-access Edge CompuTing (FedICT) is proposed. FedICT direct local-global knowledge aloof during bi-directional distillation processes between clients and the server, aiming to enable multi-task clients while alleviating client drift derived from divergent optimization directions of client-side local models. Specifically, FedICT includes Federated Prior Knowledge Distillation (FPKD) and Local Knowledge Adjustment (LKA). FPKD is proposed to reinforce the clients' fitting of local data by introducing prior knowledge of local data distributions. Moreover, LKA is proposed to correct the distillation loss of the server, making the transferred local knowledge better match the generalized representation. Experiments on three datasets show that FedICT significantly outperforms all compared benchmarks in various data heterogeneous and model architecture settings, achieving improved accuracy with less than 1.2% training communication overhead compared with FedAvg and no more than 75% training communication round compared with FedGKT.
For decades, much software engineering research has been dedicated to devising automated solutions aimed at enhancing developer productivity and elevating software quality. The past two decades have witnessed an unparalleled surge in the development of intelligent solutions tailored for software engineering tasks. This momentum established the Artificial Intelligence for Software Engineering (AI4SE) area, which has swiftly become one of the most active and popular areas within the software engineering field. This Future of Software Engineering (FoSE) paper navigates through several focal points. It commences with a succinct introduction and history of AI4SE. Thereafter, it underscores the core challenges inherent to AI4SE, particularly highlighting the need to realize trustworthy and synergistic AI4SE. Progressing, the paper paints a vision for the potential leaps achievable if AI4SE's key challenges are surmounted, suggesting a transition towards Software Engineering 2.0. Two strategic roadmaps are then laid out: one centered on realizing trustworthy AI4SE, and the other on fostering synergistic AI4SE. While this paper may not serve as a conclusive guide, its intent is to catalyze further progress. The ultimate aspiration is to position AI4SE as a linchpin in redefining the horizons of software engineering, propelling us toward Software Engineering 2.0.
Computing on encrypted data is a promising approach to reduce data security and privacy risks, with homomorphic encryption serving as a facilitator in achieving this goal. In this work, we accelerate homomorphic operations using the Processing-in- Memory (PIM) paradigm to mitigate the large memory capacity and frequent data movement requirements. Using a real-world PIM system, we accelerate the Brakerski-Fan-Vercauteren (BFV) scheme for homomorphic addition and multiplication. We evaluate the PIM implementations of these homomorphic operations with statistical workloads (arithmetic mean, variance, linear regression) and compare to CPU and GPU implementations. Our results demonstrate 50-100x speedup with a real PIM system (UPMEM) over the CPU and 2-15x over the GPU in vector addition. For vector multiplication, the real PIM system outperforms the CPU by 40-50x. However, it lags 10-15x behind the GPU due to the lack of native sufficiently wide multiplication support in the evaluated first-generation real PIM system. For mean, variance, and linear regression, the real PIM system performance improvements vary between 30x and 300x over the CPU and between 10x and 30x over the GPU, uncovering real PIM system trade-offs in terms of scalability of homomorphic operations for varying amounts of data. We plan to make our implementation open-source in the future.
The AI community has made significant strides in developing powerful foundation models, driven by large-scale multimodal datasets. However, in the audio representation learning community, the present audio-language datasets suffer from limitations such as insufficient volume, simplistic content, and arduous collection procedures. To tackle these challenges, we present an innovative and automatic audio caption generation pipeline based on a series of public tools or APIs, and construct a large-scale, high-quality, audio-language dataset, named as Auto-ACD, comprising over 1.9M audio-text pairs. To demonstrate the effectiveness of the proposed dataset, we train popular models on our dataset and show performance improvement on various downstream tasks, namely, audio-language retrieval, audio captioning, environment classification. In addition, we establish a novel test set and provide a benchmark for audio-text tasks. The proposed dataset will be released at //auto-acd.github.io/.
A significant challenge in control theory and technology is to devise agile and less resource-intensive experiments for evaluating the performance and feasibility of control algorithms for the collective coordination of large-scale complex systems. Many new methodologies are based on macroscopic representations of the emerging system behavior, and can be easily validated only through numerical simulations, because of the inherent hurdle of developing full scale experimental platforms. In this paper, we introduce a novel hybrid set-up for testing swarm robotics techniques, focusing on the collective motion of robotic swarms. This hybrid apparatus combines both real differential drive robots and virtual agents to create a heterogeneous swarm of tunable size. We validate the methodology by extending to higher dimensions, and investigating experimentally, continuification-based control methods for swarms. Our study demonstrates the versatility and effectiveness of the platform for conducting large-scale swarm robotics experiments. Also, it contributes new theoretical insights into control algorithms exploiting continuification approaches.
Causal modelling offers great potential to provide autonomous agents the ability to understand the data-generation process that governs their interactions with the world. Such models capture formal knowledge as well as probabilistic representations of noise and uncertainty typically encountered by autonomous robots in real-world environments. Thus, causality can aid autonomous agents in making decisions and explaining outcomes, but deploying causality in such a manner introduces new challenges. Here we identify challenges relating to causality in the context of a drone system operating in a salt mine. Such environments are challenging for autonomous agents because of the presence of confounders, non-stationarity, and a difficulty in building complete causal models ahead of time. To address these issues, we propose a probabilistic causal framework consisting of: causally-informed POMDP planning, online SCM adaptation, and post-hoc counterfactual explanations. Further, we outline planned experimentation to evaluate the framework integrated with a drone system in simulated mine environments and on a real-world mine dataset.
Modern neural collaborative filtering techniques are critical to the success of e-commerce, social media, and content-sharing platforms. However, despite technical advances -- for every new application domain, we need to train an NCF model from scratch. In contrast, pre-trained vision and language models are routinely applied to diverse applications directly (zero-shot) or with limited fine-tuning. Inspired by the impact of pre-trained models, we explore the possibility of pre-trained recommender models that support building recommender systems in new domains, with minimal or no retraining, without the use of any auxiliary user or item information. Zero-shot recommendation without auxiliary information is challenging because we cannot form associations between users and items across datasets when there are no overlapping users or items. Our fundamental insight is that the statistical characteristics of the user-item interaction matrix are universally available across different domains and datasets. Thus, we use the statistical characteristics of the user-item interaction matrix to identify dataset-independent representations for users and items. We show how to learn universal (i.e., supporting zero-shot adaptation without user or item auxiliary information) representations for nodes and edges from the bipartite user-item interaction graph. We learn representations by exploiting the statistical properties of the interaction data, including user and item marginals, and the size and density distributions of their clusters.
We introduce MORPH, a method for co-optimization of hardware design parameters and control policies in simulation using reinforcement learning. Like most co-optimization methods, MORPH relies on a model of the hardware being optimized, usually simulated based on the laws of physics. However, such a model is often difficult to integrate into an effective optimization routine. To address this, we introduce a proxy hardware model, which is always differentiable and enables efficient co-optimization alongside a long-horizon control policy using RL. MORPH is designed to ensure that the optimized hardware proxy remains as close as possible to its realistic counterpart, while still enabling task completion. We demonstrate our approach on simulated 2D reaching and 3D multi-fingered manipulation tasks.
Scene transfer for vision-based mobile robotics applications is a highly relevant and challenging problem. The utility of a robot greatly depends on its ability to perform a task in the real world, outside of a well-controlled lab environment. Existing scene transfer end-to-end policy learning approaches often suffer from poor sample efficiency or limited generalization capabilities, making them unsuitable for mobile robotics applications. This work proposes an adaptive multi-pair contrastive learning strategy for visual representation learning that enables zero-shot scene transfer and real-world deployment. Control policies relying on the embedding are able to operate in unseen environments without the need for finetuning in the deployment environment. We demonstrate the performance of our approach on the task of agile, vision-based quadrotor flight. Extensive simulation and real-world experiments demonstrate that our approach successfully generalizes beyond the training domain and outperforms all baselines.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.