With the booming popularity of smartphones, threats related to these devices are increasingly on the rise. Smishing, a combination of SMS (Short Message Service) and phishing has emerged as a treacherous cyber threat used by malicious actors to deceive users, aiming to steal sensitive information, money or install malware on their mobile devices. Despite the increase in smishing attacks in recent years, there are very few studies aimed at understanding the factors that contribute to a user's ability to differentiate real from fake messages. To address this gap in knowledge, we have conducted an online survey on smishing detection with 214 participants. In this study, we presented them with 16 SMS screenshots and evaluated how different factors affect their decision making process in smishing detection. Next, we conducted a follow-up survey to garner information on the participants' security attitudes, behavior and knowledge. Our results highlighted that attention and security behavioral scores had a significant impact on participants' accuracy in identifying smishing messages. Interestingly, we found that participants had more difficulty identifying real messages from fake ones, with an accuracy of 65.6% with fake messages and 44.6% with real messages. Our study is crucial in developing proactive strategies to encounter and mitigate smishing attacks. By understanding what factors influence smishing detection, we aim to bolster users' resilience against such threats and create a safer digital environment for all.
The capability to generate simulation-ready garment models from 3D shapes of clothed humans will significantly enhance the interpretability of captured geometry of real garments, as well as their faithful reproduction in the virtual world. This will have notable impact on fields like shape capture in social VR, and virtual try-on in the fashion industry. To align with the garment modeling process standardized by the fashion industry as well as cloth simulation softwares, it is required to recover 2D patterns. This involves an inverse garment design problem, which is the focus of our work here: Starting with an arbitrary target garment geometry, our system estimates an animatable garment model by automatically adjusting its corresponding 2D template pattern, along with the material parameters of the physics-based simulation (PBS). Built upon a differentiable cloth simulator, the optimization process is directed towards minimizing the deviation of the simulated garment shape from the target geometry. Moreover, our produced patterns meet manufacturing requirements such as left-to-right-symmetry, making them suited for reverse garment fabrication. We validate our approach on examples of different garment types, and show that our method faithfully reproduces both the draped garment shape and the sewing pattern.
Foundation models, such as Large language Models (LLMs), have attracted significant amount of interest due to their large number of applications. Existing works show that appropriate prompt design, such as Chain-of-Thoughts, can unlock LLM's powerful capacity in diverse areas. However, when handling tasks involving repetitive sub-tasks and/or deceptive contents, such as arithmetic calculation and article-level fake news detection, existing prompting strategies either suffers from insufficient expressive power or intermediate errors triggered by hallucination. To make LLM more discerning to such intermediate errors, we propose to guide LLM with a Divide-and-Conquer program that simultaneously ensures superior expressive power and disentangles task decomposition, sub-task resolution, and resolution assembly process. Theoretic analysis reveals that our strategy can guide LLM to extend the expressive power of fixed-depth Transformer. Experiments indicate that our proposed method can achieve better performance than typical prompting strategies in tasks bothered by intermediate errors and deceptive contents, such as large integer multiplication, hallucination detection and misinformation detection.
Initially considered as low-power units with limited autonomous processing, Edge IoT devices have seen a paradigm shift with the introduction of FPGAs and AI accelerators. This advancement has vastly amplified their computational capabilities, emphasizing the practicality of edge AI. Such progress introduces new challenges of optimizing AI tasks for the limitations of energy and network resources typical in Edge computing environments. Our study explores methods that enable distributed data processing through AI-enabled edge devices, enhancing collaborative learning capabilities. A key focus of our research is the challenge of determining confidence levels in learning outcomes, considering the spatial and temporal variability of data sets encountered by independent agents. To address this issue, we investigate the application of Bayesian neural networks, proposing a novel approach to manage uncertainty in distributed learning environments.
When a robotic system is redundant with respect to a given task, the remaining degrees of freedom can be used to satisfy additional objectives. With current robotic systems having more and more degrees of freedom, this can lead to an entire hierarchy of tasks that need to be solved according to given priorities. In this paper, the first compliant control strategy is presented that allows to consider an arbitrary number of equality and inequality tasks, while still preserving the natural inertia of the robot. The approach is therefore a generalization of a passivity-based controller to the case of an arbitrary number of equality and inequality tasks. The key idea of the method is to use a Weighted Hierarchical Quadratic Problem to extract the set of active tasks and use the latter to perform a coordinate transformation that inertially decouples the tasks. Thereby unifying the line of research focusing on optimization-based and passivity-based multi-task controllers. The method is validated in simulation.
To enable large-scale and efficient deployment of artificial intelligence (AI), the combination of AI and edge computing has spawned Edge Intelligence, which leverages the computing and communication capabilities of end devices and edge servers to process data closer to where it is generated. A key technology for edge intelligence is the privacy-protecting machine learning paradigm known as Federated Learning (FL), which enables data owners to train models without having to transfer raw data to third-party servers. However, FL networks are expected to involve thousands of heterogeneous distributed devices. As a result, communication efficiency remains a key bottleneck. To reduce node failures and device exits, a Hierarchical Federated Learning (HFL) framework is proposed, where a designated cluster leader supports the data owner through intermediate model aggregation. Therefore, based on the improvement of edge server resource utilization, this paper can effectively make up for the limitation of cache capacity. In order to mitigate the impact of soft clicks on the quality of user experience (QoE), the authors model the user QoE as a comprehensive system cost. To solve the formulaic problem, the authors propose a decentralized caching algorithm with federated deep reinforcement learning (DRL) and federated learning (FL), where multiple agents learn and make decisions independently
Recently, sign-aware graph recommendation has drawn much attention as it will learn users' negative preferences besides positive ones from both positive and negative interactions (i.e., links in a graph) with items. To accommodate the different semantics of negative and positive links, existing works utilize two independent encoders to model users' positive and negative preferences, respectively. However, these approaches cannot learn the negative preferences from high-order heterogeneous interactions between users and items formed by multiple links with different signs, resulting in inaccurate and incomplete negative user preferences. To cope with these intractable issues, we propose a novel \textbf{L}ight \textbf{S}igned \textbf{G}raph Convolution Network specifically for \textbf{Rec}ommendation (\textbf{LSGRec}), which adopts a unified modeling approach to simultaneously model high-order users' positive and negative preferences on a signed user-item interaction graph. Specifically, for the negative preferences within high-order heterogeneous interactions, first-order negative preferences are captured by the negative links, while high-order negative preferences are propagated along positive edges. Then, recommendation results are generated based on positive preferences and optimized with negative ones. Finally, we train representations of users and items through different auxiliary tasks. Extensive experiments on three real-world datasets demonstrate that our method outperforms existing baselines regarding performance and computational efficiency. Our code is available at \url{//anonymous.4open.science/r/LSGRec-BB95}.
Current disfluency detection methods heavily rely on costly and scarce human-annotated data. To tackle this issue, some approaches employ heuristic or statistical features to generate disfluent sentences, partially improving detection performance. However, these sentences often deviate from real-life scenarios, constraining overall model enhancement. In this study, we propose a lightweight data augmentation approach for disfluency detection, utilizing the superior generative and semantic understanding capabilities of large language model (LLM) to generate disfluent sentences as augmentation data. We leverage LLM to generate diverse and more realistic sentences guided by specific prompts, without the need for fine-tuning the LLM. Subsequently, we apply an uncertainty-aware data filtering approach to improve the quality of the generated sentences, utilized in training a small detection model for improved performance. Experiments using enhanced data yielded state-of-the-art results. The results showed that using a small amount of LLM-generated enhanced data can significantly improve performance, thereby further enhancing cost-effectiveness.
Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.