亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Food effect summarization from New Drug Application (NDA) is an essential component of product-specific guidance (PSG) development and assessment. However, manual summarization of food effect from extensive drug application review documents is time-consuming, which arouses a need to develop automated methods. Recent advances in large language models (LLMs) such as ChatGPT and GPT-4, have demonstrated great potential in improving the effectiveness of automated text summarization, but its ability regarding the accuracy in summarizing food effect for PSG assessment remains unclear. In this study, we introduce a simple yet effective approach, iterative prompting, which allows one to interact with ChatGPT or GPT-4 more effectively and efficiently through multi-turn interaction. Specifically, we propose a three-turn iterative prompting approach to food effect summarization in which the keyword-focused and length-controlled prompts are respectively provided in consecutive turns to refine the quality of the generated summary. We conduct a series of extensive evaluations, ranging from automated metrics to FDA professionals and even evaluation by GPT-4, on 100 NDA review documents selected over the past five years. We observe that the summary quality is progressively improved throughout the process. Moreover, we find that GPT-4 performs better than ChatGPT, as evaluated by FDA professionals (43% vs. 12%) and GPT-4 (64% vs. 35%). Importantly, all the FDA professionals unanimously rated that 85% of the summaries generated by GPT-4 are factually consistent with the golden reference summary, a finding further supported by GPT-4 rating of 72% consistency. These results strongly suggest a great potential for GPT-4 to draft food effect summaries that could be reviewed by FDA professionals, thereby improving the efficiency of PSG assessment cycle and promoting the generic drug product development.

相關內容

北京時間(jian)2023年3月15日凌晨,ChatGPT開發(fa)(fa)(fa)商OpenAI 發(fa)(fa)(fa)布了(le)(le)發(fa)(fa)(fa)布了(le)(le)全新的(de)多模(mo)(mo)態預訓練大模(mo)(mo)型 GPT-4,可(ke)(ke)(ke)以(yi)更可(ke)(ke)(ke)靠(kao)、更具(ju)創造力(li)、能(neng)(neng)處(chu)(chu)理(li)更細節的(de)指令(ling),根據圖片和(he)文(wen)字提示都(dou)能(neng)(neng)生成(cheng)相(xiang)應(ying)內容(rong)。 具(ju)體(ti)來說(shuo)來說(shuo),GPT-4 相(xiang)比上一代的(de)模(mo)(mo)型,實現了(le)(le)飛躍式(shi)提升(sheng):支持(chi)圖像和(he)文(wen)本(ben)輸入(ru),擁有(you)強大的(de)識圖能(neng)(neng)力(li);大幅提升(sheng)了(le)(le)文(wen)字輸入(ru)限制,在ChatGPT模(mo)(mo)式(shi)下,GPT-4可(ke)(ke)(ke)以(yi)處(chu)(chu)理(li)超過(guo)2.5萬(wan)字的(de)文(wen)本(ben),可(ke)(ke)(ke)以(yi)處(chu)(chu)理(li)一些更加細節的(de)指令(ling);回(hui)答準確(que)性也得到了(le)(le)顯著提高。

Cloth-changing person Re-IDentification (Re-ID) is a particularly challenging task, suffering from two limitations of inferior identity-relevant features and limited training samples. Existing methods mainly leverage auxiliary information to facilitate discriminative feature learning, including soft-biometrics features of shapes and gaits, and additional labels of clothing. However, these information may be unavailable in real-world applications. In this paper, we propose a novel FIne-grained Representation and Recomposition (FIRe$^{2}$) framework to tackle both limitations without any auxiliary information. Specifically, we first design a Fine-grained Feature Mining (FFM) module to separately cluster images of each person. Images with similar so-called fine-grained attributes (e.g., clothes and viewpoints) are encouraged to cluster together. An attribute-aware classification loss is introduced to perform fine-grained learning based on cluster labels, which are not shared among different people, promoting the model to learn identity-relevant features. Furthermore, by taking full advantage of the clustered fine-grained attributes, we present a Fine-grained Attribute Recomposition (FAR) module to recompose image features with different attributes in the latent space. It can significantly enhance representations for robust feature learning. Extensive experiments demonstrate that FIRe$^{2}$ can achieve state-of-the-art performance on five widely-used cloth-changing person Re-ID benchmarks.

Recent advances in Unmanned Aerial Vehicles (UAVs) have resulted in their quick adoption for wide a range of civilian applications, including precision agriculture, biosecurity, disaster monitoring and surveillance. UAVs offer low-cost platforms with flexible hardware configurations, as well as an increasing number of autonomous capabilities, including take-off, landing, object tracking and obstacle avoidance. However, little attention has been paid to how UAVs deal with object detection uncertainties caused by false readings from vision-based detectors, data noise, vibrations, and occlusion. In most situations, the relevance and understanding of these detections are delegated to human operators, as many UAVs have limited cognition power to interact autonomously with the environment. This paper presents a framework for autonomous navigation under uncertainty in outdoor scenarios for small UAVs using a probabilistic-based motion planner. The framework is evaluated with real flight tests using a sub 2 kg quadrotor UAV and illustrated in victim finding Search and Rescue (SAR) case study in a forest/bushland. The navigation problem is modelled using a Partially Observable Markov Decision Process (POMDP), and solved in real time onboard the small UAV using Augmented Belief Trees (ABT) and the TAPIR toolkit. Results from experiments using colour and thermal imagery show that the proposed motion planner provides accurate victim localisation coordinates, as the UAV has the flexibility to interact with the environment and obtain clearer visualisations of any potential victims compared to the baseline motion planner. Incorporating this system allows optimised UAV surveillance operations by diminishing false positive readings from vision-based object detectors.

Synthesizing large logic programs through symbolic Inductive Logic Programming (ILP) typically requires intermediate definitions. However, cluttering the hypothesis space with intensional predicates typically degrades performance. In contrast, gradient descent provides an efficient way to find solutions within such high-dimensional spaces. Neuro-symbolic ILP approaches have not fully exploited this so far. We propose extending the {\delta}ILP approach to inductive synthesis with large-scale predicate invention, thus allowing us to exploit the efficacy of high-dimensional gradient descent. We show that large-scale predicate invention benefits differentiable inductive synthesis through gradient descent and allows one to learn solutions for tasks beyond the capabilities of existing neuro-symbolic ILP systems. Furthermore, we achieve these results without specifying the precise structure of the solution within the language bias.

We consider extensions of the Newton-MR algorithm for nonconvex optimization to the settings where Hessian information is approximated. Under additive noise model on the Hessian matrix, we investigate the iteration and operation complexities of these variants to achieve first and second-order sub-optimality criteria. We show that, under certain conditions, the algorithms achieve iteration and operation complexities that match those of the exact variant. Focusing on the particular nonconvex problems satisfying Polyak-\L ojasiewicz condition, we show that our algorithm achieves a linear convergence rate. We finally compare the performance of our algorithms with several alternatives on a few machine learning problems.

Carbon footprint optimization (CFO) is important for sustainable heavy-duty e-truck transportation. We consider the CFO problem for timely transportation of e-trucks, where the truck travels from an origin to a destination across a national highway network subject to a deadline. The goal is to minimize the carbon footprint by orchestrating path planning, speed planning, and intermediary charging planning. We first show that it is NP-hard even just to find a feasible CFO solution. We then develop a $(1+\epsilon_F, 1+\epsilon_\beta)$ bi-criteria approximation algorithm that achieves a carbon footprint within a ratio of $(1+\epsilon_F)$ to the minimum with no deadline violation and at most a ratio of $(1+\epsilon_\beta)$ battery capacity violation (for any positive $\epsilon_F$ and $\epsilon_\beta$). Its time complexity is polynomial in the size of the highway network, $1/\epsilon_F$, and $1/\epsilon_\beta$. Such algorithmic results are among the best possible unless P=NP. Simulation results based on real-world traces show that our scheme reduces up to 11\% carbon footprint as compared to baseline alternatives considering only energy consumption but not carbon footprint.

The paper proposes a novel End-to-End Learning and Repair (E2ELR) architecture for training optimization proxies for economic dispatch problems. E2ELR combines deep neural networks with closed-form, differentiable repair layers, thereby integrating learning and feasibility in an end-to-end fashion. E2ELR is also trained with self-supervised learning, removing the need for labeled data and the solving of numerous optimization problems offline. E2ELR is evaluated on industry-size power grids with tens of thousands of buses using an economic dispatch that co-optimizes energy and reserves. The results demonstrate that the self-supervised E2ELR achieves state-of-the-art performance, with optimality gaps that outperform other baselines by at least an order of magnitude.

We propose a novel constrained Bayesian Optimization (BO) algorithm optimizing the design process of Laterally-Diffused Metal-Oxide-Semiconductor (LDMOS) transistors while realizing a target Breakdown Voltage (BV). We convert the constrained BO problem into a conventional BO problem using a Lagrange multiplier. Instead of directly optimizing the traditional Figure-of-Merit (FOM), we set the Lagrangian as the objective function of BO. This adaptive objective function with a changeable Lagrange multiplier can address constrained BO problems which have constraints that require costly evaluations, without the need for additional surrogate models to approximate constraints. Our algorithm enables a device designer to set the target BV in the design space, and obtain a device that satisfies the optimized FOM and the target BV constraint automatically. Utilizing this algorithm, we have also explored the physical limits of the FOM for our devices in 30 - 50 V range within the defined design space.

The aquaculture sector in New Zealand is experiencing rapid expansion, with a particular emphasis on mussel exports. As the demands of mussel farming operations continue to evolve, the integration of artificial intelligence and computer vision techniques, such as intelligent object detection, is emerging as an effective approach to enhance operational efficiency. This study delves into advancing buoy detection by leveraging deep learning methodologies for intelligent mussel farm monitoring and management. The primary objective centers on improving accuracy and robustness in detecting buoys across a spectrum of real-world scenarios. A diverse dataset sourced from mussel farms is captured and labeled for training, encompassing imagery taken from cameras mounted on both floating platforms and traversing vessels, capturing various lighting and weather conditions. To establish an effective deep learning model for buoy detection with a limited number of labeled data, we employ transfer learning techniques. This involves adapting a pre-trained object detection model to create a specialized deep learning buoy detection model. We explore different pre-trained models, including YOLO and its variants, alongside data diversity to investigate their effects on model performance. Our investigation demonstrates a significant enhancement in buoy detection performance through deep learning, accompanied by improved generalization across diverse weather conditions, highlighting the practical effectiveness of our approach.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司