A posteriori upper and lower bounds are derived for the linear finite element method (FEM) for the Helmholtz equation with large wave number. It is proved rigorously that the standard residual type error estimator seriously underestimates the true error of the FE solution for the mesh size $h$ in the preasymptotic regime, which is first observed by Babu\v{s}ka, et al. for an one dimensional problem. By establishing an equivalence relationship between the error estimators for the FE solution and the corresponding elliptic projection of the exact solution, an adaptive algorithm is proposed and its convergence and quasi-optimality are proved under condition that $k^3h_0^{1+\al}$ is sufficiently small, where $h_0$ is the initial mesh size and $\frac12<\al\le 1$ is a regularity constant depending on the maximum reentrant angle of the domain. Numerical tests are given to verify the theoretical findings and to show that the adaptive continuous interior penalty finite element method (CIP-FEM) with appropriately selected penalty parameters can greatly reduce the pollution error and hence the residual type error estimator for this CIP-FEM is reliable and efficient even in the preasymptotic regime.
We establish estimates on the error made by the Deep Ritz Method for elliptic problems on the space $H^1(\Omega)$ with different boundary conditions. For Dirichlet boundary conditions, we estimate the error when the boundary values are approximately enforced through the boundary penalty method. Our results apply to arbitrary and in general non linear classes $V\subseteq H^1(\Omega)$ of ansatz functions and estimate the error in dependence of the optimization accuracy, the approximation capabilities of the ansatz class and -- in the case of Dirichlet boundary values -- the penalisation strength $\lambda$. For non-essential boundary conditions the error of the Ritz method decays with the same rate as the approximation rate of the ansatz classes. For essential boundary conditions, given an approximation rate of $r$ in $H^1(\Omega)$ and an approximation rate of $s$ in $L^2(\partial\Omega)$ of the ansatz classes, the optimal decay rate of the estimated error is $\min(s/2, r)$ and achieved by choosing $\lambda_n\sim n^{s}$. We discuss the implications for ansatz classes which are given through ReLU networks and the relation to existing estimates for finite element functions.
We consider the problem of estimating the difference between two functional undirected graphical models with shared structures. In many applications, data are naturally regarded as a vector of random functions rather than a vector of scalars. For example, electroencephalography (EEG) data are more appropriately treated as functions of time. In such a problem, not only can the number of functions measured per sample be large, but each function is itself an infinite dimensional object, making estimation of model parameters challenging. This is further complicated by the fact that the curves are usually only observed at discrete time points. We first define a functional differential graph that captures the differences between two functional graphical models and formally characterize when the functional differential graph is well defined. We then propose a method, FuDGE, that directly estimates the functional differential graph without first estimating each individual graph. This is particularly beneficial in settings where the individual graphs are dense, but the differential graph is sparse. We show that FuDGE consistently estimates the functional differential graph even in a high-dimensional setting for both fully observed and discretely observed function paths. We illustrate the finite sample properties of our method through simulation studies. We also propose a competing method, the Joint Functional Graphical Lasso, which generalizes the Joint Graphical Lasso to the functional setting. Finally, we apply our method to EEG data to uncover differences in functional brain connectivity between a group of individuals with alcohol use disorder and a control group.
This paper proposes a regularization of the Monge-Amp\`ere equation in planar convex domains through uniformly elliptic Hamilton-Jacobi-Bellman equations. The regularized problem possesses a unique strong solution $u_\varepsilon$ and is accessible to the discretization with finite elements. This work establishes locally uniform convergence of $u_\varepsilon$ to the convex Alexandrov solution $u$ to the Monge-Amp\`ere equation as the regularization parameter $\varepsilon$ approaches $0$. A mixed finite element method for the approximation of $u_\varepsilon$ is proposed, and the regularized finite element scheme is shown to be locally uniformly convergent. Numerical experiments provide empirical evidence for the efficient approximation of singular solutions $u$.
In this paper, a generalized finite element method (GFEM) with optimal local approximation spaces for solving high-frequency heterogeneous Helmholtz problems is systematically studied. The local spaces are built from selected eigenvectors of local eigenvalue problems defined on generalized harmonic spaces. At both continuous and discrete levels, $(i)$ wavenumber explicit and nearly exponential decay rates for the local approximation errors are obtained without any assumption on the size of subdomains; $(ii)$ a quasi-optimal and nearly exponential global convergence of the method is established by assuming that the size of subdomains is $O(1/k)$ ($k$ is the wavenumber). A novel resonance effect between the wavenumber and the dimension of local spaces on the decay of error with respect to the oversampling size is implied by the analysis. Furthermore, for fixed dimensions of local spaces, the discrete local errors are proved to converge as $h\rightarrow 0$ ($h$ denoting the mesh size) towards the continuous local errors. The method at the continuous level extends the plane wave partition of unity method [I. Babuska and J. M. Melenk, Int.\;J.\;Numer.\;Methods Eng., 40 (1997), pp.~727--758] to the heterogeneous-coefficients case, and at the discrete level, it delivers an efficient non-iterative domain decomposition method for solving discrete Helmholtz problems resulting from standard FE discretizations. Numerical results are provided to confirm the theoretical analysis and to validate the proposed method.
We introduce an original way to estimate the memory parameter of the elephant random walk, a fascinating discrete time random walk on integers having a complete memory of its entire history. Our estimator is nothing more than a quasi-maximum likelihood estimator, based on a second order Taylor approximation of the log-likelihood function. We show the almost sure convergence of our estimate in the diffusive, critical and superdiffusive regimes. The local asymptotic normality of our statistical procedure is established in the diffusive regime, while the local asymptotic mixed normality is proven in the superdiffusive regime. Asymptotic and exact confidence intervals as well as statistical tests are also provided. All our analysis relies on asymptotic results for martingales and the quadratic variations associated.
In this paper, we develop a Monte Carlo algorithm named the Frozen Gaussian Sampling (FGS) to solve the semiclassical Schr\"odinger equation based on the frozen Gaussian approximation. Due to the highly oscillatory structure of the wave function, traditional mesh-based algorithms suffer from "the curse of dimensionality", which gives rise to more severe computational burden when the semiclassical parameter \(\ep\) is small. The Frozen Gaussian sampling outperforms the existing algorithms in that it is mesh-free in computing the physical observables and is suitable for high dimensional problems. In this work, we provide detailed procedures to implement the FGS for both Gaussian and WKB initial data cases, where the sampling strategies on the phase space balance the need of variance reduction and sampling convenience. Moreover, we rigorously prove that, to reach a certain accuracy, the number of samples needed for the FGS is independent of the scaling parameter \(\ep\). Furthermore, the complexity of the FGS algorithm is of a sublinear scaling with respect to the microscopic degrees of freedom and, in particular, is insensitive to the dimension number. The performance of the FGS is validated through several typical numerical experiments, including simulating scattering by the barrier potential, formation of the caustics and computing the high-dimensional physical observables without mesh.
We propose a new splitting method for strong numerical solution of the Cox-Ingersoll-Ross model. For this method, applied over both deterministic and adaptive random meshes, we prove a uniform moment bound and strong error results of order $1/4$ in $L_1$ and $L_2$ for the parameter regime $\kappa\theta>\sigma^2$. Our scheme does not fall into the class analyzed in Hefter & Herzwurm (2018) where convergence of maximum order $1/4$ of a novel class of Milstein-based methods over the full range of parameter values is shown. Hence we present a separate convergence analysis before we extend the new method to cover all parameter values by introducing a 'soft zero' region (where the deterministic flow determines the approximation) giving a hybrid type method to deal with the reflecting boundary. From numerical simulations we observe a rate of order $1$ when $\kappa\theta>\sigma^2$ rather than $1/4$. Asymptotically, for large noise, we observe that the rates of convergence decrease similarly to those of other schemes but that the proposed method displays smaller error constants. Our results also serve as supporting numerical evidence that the conjecture of Hefter & Jentzen (2019) holds true for methods with non-uniform Wiener increments.
This paper proposes an algorithm to generate random numbers from any member of the truncated multivariate elliptical family of distributions with a strictly decreasing density generating function. Based on Neal (2003) and Ho et al. (2012), we construct an efficient sampling method by means of a slice sampling algorithm with Gibbs sampler steps. We also provide a faster approach to approximate the first and the second moment for the truncated multivariate elliptical distributions where Monte Carlo integration is used for the truncated partition, and explicit expressions for the non-truncated part (Galarza et al., 2020). Examples and an application to environmental spatial data illustrate its usefulness. Methods are available for free in the new R library elliptical.
Stochastic variance reduced gradient (SVRG) is a popular variance reduction technique for accelerating stochastic gradient descent (SGD). We provide a first analysis of the method for solving a class of linear inverse problems in the lens of the classical regularization theory. We prove that for a suitable constant step size schedule, the method can achieve an optimal convergence rate in terms of the noise level (under suitable regularity condition) and the variance of the SVRG iterate error is smaller than that by SGD. These theoretical findings are corroborated by a set of numerical experiments.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.