亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As the COVID-19 pandemic emerged in early 2020, a number of malicious actors have started capitalizing the topic. Although a few media reports mentioned the existence of coronavirus-themed mobile malware, the research community lacks the understanding of the landscape of the coronavirus-themed mobile malware. In this paper, we present the first systematic study of coronavirus-themed Android malware. We first make efforts to create a daily growing COVID-19 themed mobile app dataset, which contains 4,322 COVID-19 themed apk samples (2,500 unique apps) and 611 potential malware samples (370 unique malicious apps) by the time of mid-November, 2020. We then present an analysis of them from multiple perspectives including trends and statistics, installation methods, malicious behaviors and malicious actors behind them. We observe that the COVID-19 themed apps as well as malicious ones began to flourish almost as soon as the pandemic broke out worldwide. Most malicious apps are camouflaged as benign apps using the same app identifiers (e.g., app name, package name and app icon). Their main purposes are either stealing users' private information or making profit by using tricks like phishing and extortion. Furthermore, only a quarter of the COVID-19 malware creators are habitual developers who have been active for a long time, while 75% of them are newcomers in this pandemic. The malicious developers are mainly located in US, mostly targeting countries including English-speaking countries, China, Arabic countries and Europe. To facilitate future research, we have publicly released all the well-labelled COVID-19 themed apps (and malware) to the research community. Till now, over 30 research institutes around the world have requested our dataset for COVID-19 themed research.

相關內容

Algorithm audits have increased in recent years due to a growing need to independently assess the performance of automatically curated services that process, filter and rank the large and dynamic amount of information available on the internet. Among several methodologies to perform such audits, virtual agents stand out because they offer the possibility of performing systematic experiments simulating human behaviour without the associated costs of recruiting participants. Motivated by the importance of research transparency and replicability of results, this paper focuses on the challenges of such an approach, and it provides methodological details, recommendations, lessons learned and limitations that researchers should take into consideration when setting up experiments with virtual agents. We demonstrate the successful performance of our research infrastructure in multiple data collections with diverse experimental designs, and point to different changes and strategies that improved the quality of the method. We conclude that virtual agents are a promising venue for monitoring the performance of algorithms during longer periods of time, and we hope that this paper serves as a base to widen the research in this direction.

Mobile apps are extensively involved in cyber-crimes. Some apps are malware which compromise users' devices, while some others may lead to privacy leakage. Apart from them, there also exist apps which directly make profit from victims through deceiving, threatening or other criminal actions. We name these apps as CULPRITWARE. They have become emerging threats in recent years. However, the characteristics and the ecosystem of CULPRITWARE remain mysterious. This paper takes the first step towards systematically studying CULPRITWARE and its ecosystem. Specifically, we first characterize CULPRITWARE by categorizing and comparing them with benign apps and malware. The result shows that CULPRITWARE have unique features, e.g., the usage of app generators (25.27%) deviates from that of benign apps (5.08%) and malware (0.43%). Such a discrepancy can be used to distinguish CULPRITWARE from benign apps and malware. Then we understand the structure of the ecosystem by revealing the four participating entities (i.e., developer, agent, operator and reaper) and the workflow. After that, we further reveal the characteristics of the ecosystem by studying the participating entities. Our investigation shows that the majority of CULPRITWARE (at least 52.08%) are propagated through social media rather than the official app markets, and most CULPRITWARE (96%) indirectly rely on the covert fourth-party payment services to transfer the profits. Our findings shed light on the ecosystem, and can facilitate the community and law enforcement authorities to mitigate the threats. We will release the source code of our tools to engage the community.

Since December 2019, the COVID-19 pandemic has caused people around the world to exercise social distancing, which has led to an abrupt rise in the adoption of remote communications for working, socializing, and learning from home. As remote communications will outlast the pandemic, it is crucial to protect users' security and respect their privacy in this unprecedented setting, and that requires a thorough understanding of their behaviors, attitudes, and concerns toward various aspects of remote communications. To this end, we conducted an online study with 220 worldwide Prolific participants. We found that privacy and security are among the most frequently mentioned factors impacting participants' attitude and comfort level with conferencing tools and meeting locations. Open-ended responses revealed that most participants lacked autonomy when choosing conferencing tools or using microphone/webcam in their remote meetings, which in several cases contradicted their personal privacy and security preferences. Based on our findings, we distill several recommendations on how employers, educators, and tool developers can inform and empower users to make privacy-protective decisions when engaging in remote communications.

Temporal evolution of the coronavirus literature over the last thirty years (N=43,769) is analyzed along with its subdomain of SARS-CoV-2 articles (N=27,460) and the subdomain of reviews and meta-analytic studies (N=1,027). (i) The analyses on the subset of SARS-CoV-2 literature identified studies published prior to 2020 that have now proven highly instrumental in the development of various clusters of publications linked to SARS-CoV-2. In particular, the so-called sleeping beauties of the coronavirus literature with an awakening in 2020 were identified, i.e., previously published studies of this literature that had remained relatively unnoticed for several years but gained sudden traction in 2020 in the wake of the SARS-CoV-2 outbreak. (ii) The subset of 2020 SARS-CoV-2 articles is bibliographically distant from the rest of this literature published prior to 2020. Individual articles of the SARS-CoV-2 segment with a bridging role between the two bodies of articles (i.e., before and after 2020) are identifiable. (iii) Furthermore, the degree of bibliographic coupling within the 2020 SARS-CoV-2 cluster is much poorer compared to the cluster of articles published prior to 2020. This could, in part, be explained by the higher diversity of topics that are studied in relation to SARS-CoV-2 compared to the literature of coronaviruses published prior to the SARS-CoV-2 disease. This work demonstrates how scholarly efforts undertaken during peace time or prior to a disease outbreak could suddenly play a critical role in prevention and mitigation of health disasters caused by new diseases.

Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July, 2020) in 8 languages and attracted 7,290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.

Human beings, even small children, quickly become adept at figuring out how to use applications on their mobile devices. Learning to use a new app is often achieved via trial-and-error, accelerated by transfer of knowledge from past experiences with like apps. The prospect of building a smarter smartphone - one that can learn how to achieve tasks using mobile apps - is tantalizing. In this paper we explore the use of Reinforcement Learning (RL) with the goal of advancing this aspiration. We introduce an RL-based framework for learning to accomplish tasks in mobile apps. RL agents are provided with states derived from the underlying representation of on-screen elements, and rewards that are based on progress made in the task. Agents can interact with screen elements by tapping or typing. Our experimental results, over a number of mobile apps, show that RL agents can learn to accomplish multi-step tasks, as well as achieve modest generalization across different apps. More generally, we develop a platform which addresses several engineering challenges to enable an effective RL training environment. Our AppBuddy platform is compatible with OpenAI Gym and includes a suite of mobile apps and benchmark tasks that supports a diversity of RL research in the mobile app setting.

COVID-19 is having a dramatic impact on research and researchers. The pandemic has underlined the severity of known challenges in research and surfaced new ones, but also accelerated the adoption of innovations and manifested new opportunities. This review considers early trends emerging from meta-research on COVID-19. In particular, it focuses on the following topics: i) mapping COVID-19 research; ii) data and machine learning; iii) research practices including open access and open data, reviewing, publishing and funding; iv) communicating research to the public; v) the impact of COVID-19 on researchers, in particular with respect to gender and career trajectories. This overview finds that most early meta-research on COVID-19 has been reactive and focused on short-term questions, while more recently a shift to consider the long-term consequences of COVID-19 is taking place. Based on these findings, the author speculates that some aspects of doing research during COVID-19 are more likely to persist than others. These include: the shift to virtual for academic events such as conferences; the use of openly accessible pre-prints; the `datafication' of scholarly literature and consequent broader adoption of machine learning in science communication; the public visibility of research and researchers on social and online media.

Website Fingerprinting (WF) attacks are used by local passive attackers to determine the destination of encrypted internet traffic by comparing the sequences of packets sent to and received by the user to a previously recorded data set. As a result, WF attacks are of particular concern to privacy-enhancing technologies such as Tor. In response, a variety of WF defenses have been developed, though they tend to incur high bandwidth and latency overhead or require additional infrastructure, thus making them difficult to implement in practice. Some lighter-weight defenses have been presented as well; still, they attain only moderate effectiveness against recently published WF attacks. In this paper, we aim to present a realistic and novel defense, RegulaTor, which takes advantage of common patterns in web browsing traffic to reduce both defense overhead and the accuracy of current WF attacks. In the closed-world setting, RegulaTor reduces the accuracy of the state-of-the-art attack, Tik-Tok, against comparable defenses from 66% to 25.4%. To achieve this performance, it requires limited added latency and a bandwidth overhead 39.1% less than the leading moderate-overhead defense. In the open-world setting, RegulaTor limits a precision-tuned Tik-Tok attack to an F-score of .135, compared to .625 for the best comparable defense.

The COVID-19 pandemic has stimulated the shift of work and life from the physical to a more digital format. To survive and thrive, companies have integrated more digital-enabled elements into their businesses to facilitate resilience, by avoiding potential close physical contact. Following Design Science Research Methodology (DSRM), this paper builds a workflow management system for contactless digital resilience when customers are purchasing in a store. Customer behavior, in coping with digital resilience against COVID-19, is illustrated and empirically tested, using a derivative model in which the constructs are from classical theories. Data was collected from individual customers via the Internet, and 247 completed questionnaires were examined.

In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.

北京阿比特科技有限公司