亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning has enabled breakthroughs in automated diagnosis from medical imaging, with many successful applications in ophthalmology. However, standard medical image classification approaches only assess disease presence at the time of acquisition, neglecting the common clinical setting of longitudinal imaging. For slow, progressive eye diseases like age-related macular degeneration (AMD) and primary open-angle glaucoma (POAG), patients undergo repeated imaging over time to track disease progression and forecasting the future risk of developing disease is critical to properly plan treatment. Our proposed Longitudinal Transformer for Survival Analysis (LTSA) enables dynamic disease prognosis from longitudinal medical imaging, modeling the time to disease from sequences of fundus photography images captured over long, irregular time periods. Using longitudinal imaging data from the Age-Related Eye Disease Study (AREDS) and Ocular Hypertension Treatment Study (OHTS), LTSA significantly outperformed a single-image baseline in 19/20 head-to-head comparisons on late AMD prognosis and 18/20 comparisons on POAG prognosis. A temporal attention analysis also suggested that, while the most recent image is typically the most influential, prior imaging still provides additional prognostic value.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 神經元 · Networking · 極大 · 優化器 ·
2024 年 6 月 25 日

Elements of neural networks, both biological and artificial, can be described by their selectivity for specific cognitive features. Understanding these features is important for understanding the inner workings of neural networks. For a living system, such as a neuron, whose response to a stimulus is unknown and not differentiable, the only way to reveal these features is through a feedback loop that exposes it to a large set of different stimuli. The properties of these stimuli should be varied iteratively in order to maximize the neuronal response. To utilize this feedback loop for a biological neural network, it is important to run it quickly and efficiently in order to reach the stimuli that maximizes certain neurons' activation with the least number of iterations possible. Here we present a framework with an efficient design for such a loop. We successfully tested it on an artificial spiking neural network (SNN), which is a model that simulates the asynchronous spiking activity of neurons in living brains. Our optimization method for activation maximization is based on the low-rank Tensor Train decomposition of the discrete activation function. The optimization space is the latent parameter space of images generated by SN-GAN or VQ-VAE generative models. To our knowledge, this is the first time that effective AM has been applied to SNNs. We track changes in the optimal stimuli for artificial neurons during training and show that highly selective neurons can form already in the early epochs of training and in the early layers of a convolutional spiking network. This formation of refined optimal stimuli is associated with an increase in classification accuracy. Some neurons, especially in the deeper layers, may gradually change the concepts they are selective for during learning, potentially explaining their importance for model performance.

Keypoint data has received a considerable amount of attention in machine learning for tasks like action detection and recognition. However, human experts in movement such as doctors, physiotherapists, sports scientists and coaches use a notion of joint angles standardised by the International Society of Biomechanics to precisely and efficiently communicate static body poses and movements. In this paper, we introduce the basic biomechanical notions and show how they can be used to convert common keypoint data into joint angles that uniquely describe the given pose and have various desirable mathematical properties, such as independence of both the camera viewpoint and the person performing the action. We experimentally demonstrate that the joint angle representation of keypoint data is suitable for machine learning applications and can in some cases bring an immediate performance gain. The use of joint angles as a human meaningful representation of kinematic data is in particular promising for applications where interpretability and dialog with human experts is important, such as many sports and medical applications. To facilitate further research in this direction, we will release a python package to convert keypoint data into joint angles as outlined in this paper.

Current physics-informed (standard or deep operator) neural networks still rely on accurately learning the initial and/or boundary conditions of the system of differential equations they are solving. In contrast, standard numerical methods involve such conditions in computations without needing to learn them. In this study, we propose to improve current physics-informed deep learning strategies such that initial and/or boundary conditions do not need to be learned and are represented exactly in the predicted solution. Moreover, this method guarantees that when a deep operator network is applied multiple times to time-step a solution of an initial value problem, the resulting function is at least continuous.

Effective clustering of biomedical data is crucial in precision medicine, enabling accurate stratifiction of patients or samples. However, the growth in availability of high-dimensional categorical data, including `omics data, necessitates computationally efficient clustering algorithms. We present VICatMix, a variational Bayesian finite mixture model designed for the clustering of categorical data. The use of variational inference (VI) in its training allows the model to outperform competitors in term of efficiency, while maintaining high accuracy. VICatMix furthermore performs variable selection, enhancing its performance on high-dimensional, noisy data. The proposed model incorporates summarisation and model averaging to mitigate poor local optima in VI, allowing for improved estimation of the true number of clusters simultaneously with feature saliency. We demonstrate the performance of VICatMix with both simulated and real-world data, including applications to datasets from The Cancer Genome Atlas (TCGA), showing its use in cancer subtyping and driver gene discovery. We demonstrate VICatMix's utility in integrative cluster analysis with different `omics datasets, enabling the discovery of novel subtypes. \textbf{Availability:} VICatMix is freely available as an R package, incorporating C++ for faster computation, at \url{//github.com/j-ackierao/VICatMix}.

Accurately extracting clinical information from speech is critical to the diagnosis and treatment of many neurological conditions. As such, there is interest in leveraging AI for automatic, objective assessments of clinical speech to facilitate diagnosis and treatment of speech disorders. We explore transfer learning using foundation models, focusing on the impact of layer selection for the downstream task of predicting pathological speech features. We find that selecting an optimal layer can greatly improve performance (~15.8% increase in balanced accuracy per feature as compared to worst layer, ~13.6% increase as compared to final layer), though the best layer varies by predicted feature and does not always generalize well to unseen data. A learned weighted sum offers comparable performance to the average best layer in-distribution (only ~1.2% lower) and had strong generalization for out-of-distribution data (only 1.5% lower than the average best layer).

This work overviews a new, recent success of phase-field modelling: its application to predicting the evolution of the corrosion front and the associated structural integrity challenges. Despite its important implications for society, predicting corrosion damage has been an elusive goal for scientists and engineers. The application of phase-field modelling to corrosion not only enables tracking the electrolyte-metal interface but also provides an avenue to explicitly simulate the underlying mesoscale physical processes. This lays the grounds for developing the first generation of mechanistic corrosion models, which can capture key phenomena such as film rupture and repassivation, the transition from activation- to diffusion-controlled corrosion, interactions with mechanical fields, microstructural and electrochemical effects, intergranular corrosion, material biodegradation, and the interplay with other environmentally-assisted damage phenomena such as hydrogen embrittlement.

Understanding the mechanisms through which neural networks extract statistics from input-label pairs through feature learning is one of the most important unsolved problems in supervised learning. Prior works demonstrated that the gram matrices of the weights (the neural feature matrices, NFM) and the average gradient outer products (AGOP) become correlated during training, in a statement known as the neural feature ansatz (NFA). Through the NFA, the authors introduce mapping with the AGOP as a general mechanism for neural feature learning. However, these works do not provide a theoretical explanation for this correlation or its origins. In this work, we further clarify the nature of this correlation, and explain its emergence. We show that this correlation is equivalent to alignment between the left singular structure of the weight matrices and the newly defined pre-activation tangent features at each layer. We further establish that the alignment is driven by the interaction of weight changes induced by SGD with the pre-activation features, and analyze the resulting dynamics analytically at early times in terms of simple statistics of the inputs and labels. Finally, motivated by the observation that the NFA is driven by this centered correlation, we introduce a simple optimization rule that dramatically increases the NFA correlations at any given layer and improves the quality of features learned.

Gesture is an important mean of non-verbal communication, with visual modality allows human to convey information during interaction, facilitating peoples and human-machine interactions. However, it is considered difficult to automatically recognise gestures. In this work, we explore three different means to recognise hand signs using deep learning: supervised learning based methods, self-supervised methods and visualisation based techniques applied to 3D moving skeleton data. Self-supervised learning used to train fully connected, CNN and LSTM method. Then, reconstruction method is applied to unlabelled data in simulated settings using CNN as a backbone where we use the learnt features to perform the prediction in the remaining labelled data. Lastly, Grad-CAM is applied to discover the focus of the models. Our experiments results show that supervised learning method is capable to recognise gesture accurately, with self-supervised learning increasing the accuracy in simulated settings. Finally, Grad-CAM visualisation shows that indeed the models focus on relevant skeleton joints on the associated gesture.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司