亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Computing the proximal operator of the sparsity-promoting piece-wise exponential (PiE) penalty $1-e^{-|x|/\sigma}$ with a given shape parameter $\sigma>0$, which is treated as a popular nonconvex surrogate of $\ell_0$-norm, is fundamental in feature selection via support vector machines, image reconstruction, zero-one programming problems, compressed sensing, etc. Due to the nonconvexity of PiE, for a long time, its proximal operator is frequently evaluated via an iteratively reweighted $\ell_1$ algorithm, which substitutes PiE with its first-order approximation, however, the obtained solutions only are the critical point. Based on the exact characterization of the proximal operator of PiE, we explore how the iteratively reweighted $\ell_1$ solution deviates from the true proximal operator in certain regions, which can be explicitly identified in terms of $\sigma$, the initial value and the regularization parameter in the definition of the proximal operator. Moreover, the initial value can be adaptively and simply chosen to ensure that the iteratively reweighted $\ell_1$ solution belongs to the proximal operator of PiE.

相關內容

We provide an algorithm that maintains, against an adaptive adversary, a $(1-\varepsilon)$-approximate maximum matching in $n$-node $m$-edge general (not necessarily bipartite) undirected graph undergoing edge deletions with high probability with (amortized) $O(\mathrm{poly}(\varepsilon^{-1}, \log n))$ time per update. We also obtain the same update time for maintaining a fractional approximate weighted matching (and hence an approximation to the value of the maximum weight matching) and an integral approximate weighted matching in dense graphs. Our unweighted result improves upon the prior state-of-the-art which includes a $\mathrm{poly}(\log{n}) \cdot 2^{O(1/\varepsilon^2)}$ update time [Assadi-Bernstein-Dudeja 2022] and an $O(\sqrt{m} \varepsilon^{-2})$ update time [Gupta-Peng 2013], and our weighted result improves upon the $O(\sqrt{m}\varepsilon^{-O(1/\varepsilon)}\log{n})$ update time due to [Gupta-Peng 2013]. To obtain our results, we generalize a recent optimization approach to dynamic algorithms from [Jambulapati-Jin-Sidford-Tian 2022]. We show that repeatedly solving entropy-regularized optimization problems yields a lazy updating scheme for fractional decremental problems with a near-optimal number of updates. To apply this framework we develop optimization methods compatible with it and new dynamic rounding algorithms for the matching polytope.

In this paper, we consider the problem of maintaining a $(1-\varepsilon)$-approximate maximum weight matching in a dynamic graph $G$, while the adversary makes changes to the edges of the graph. In the fully dynamic setting, where both edge insertions and deletions are allowed, Gupta and Peng gave an algorithm for this problem with an update time of $\tilde{O}_{\varepsilon}(\sqrt{m})$. We study a natural relaxation of this problem, namely the decremental model, where the adversary is only allowed to delete edges. For the cardinality version of this problem in general (possibly, non-bipartite) graphs, Assadi, Bernstein, and Dudeja gave a decremental algorithm with update time $O_{\varepsilon}(\text{poly}(\log n))$. However, beating $\tilde{O}_{\varepsilon}(\sqrt{m})$ update time remained an open problem for the \emph{weighted} version in \emph{general graphs}. In this paper, we bridge the gap between unweighted and weighted general graphs for the decremental setting. We give a $O_{\varepsilon}(\text{poly}(\log n))$ update time algorithm that maintains a $(1-\varepsilon)$-approximate maximum weight matching under adversarial deletions. Like the decremental algorithm of Assadi, Bernstein, and Dudeja, our algorithm is randomized, but works against an adaptive adversary. It also matches the time bound for the cardinality version upto dependencies on $\varepsilon$ and a $\log R$ factor, where $R$ is the ratio between the maximum and minimum edge weight in $G$.

We give a stochastic optimization algorithm that solves a dense $n\times n$ real-valued linear system $Ax=b$, returning $\tilde x$ such that $\|A\tilde x-b\|\leq \epsilon\|b\|$ in time: $$\tilde O((n^2+nk^{\omega-1})\log1/\epsilon),$$ where $k$ is the number of singular values of $A$ larger than $O(1)$ times its smallest positive singular value, $\omega < 2.372$ is the matrix multiplication exponent, and $\tilde O$ hides a poly-logarithmic in $n$ factor. When $k=O(n^{1-\theta})$ (namely, $A$ has a flat-tailed spectrum, e.g., due to noisy data or regularization), this improves on both the cost of solving the system directly, as well as on the cost of preconditioning an iterative method such as conjugate gradient. In particular, our algorithm has an $\tilde O(n^2)$ runtime when $k=O(n^{0.729})$. We further adapt this result to sparse positive semidefinite matrices and least squares regression. Our main algorithm can be viewed as a randomized block coordinate descent method, where the key challenge is simultaneously ensuring good convergence and fast per-iteration time. In our analysis, we use theory of majorization for elementary symmetric polynomials to establish a sharp convergence guarantee when coordinate blocks are sampled using a determinantal point process. We then use a Markov chain coupling argument to show that similar convergence can be attained with a cheaper sampling scheme, and accelerate the block coordinate descent update via matrix sketching.

Given a set of $n$ points in the Euclidean plane, the $k$-MinSumRadius problem asks to cover this point set using $k$ disks with the objective of minimizing the sum of the radii of the disks. After a long line of research on related problems, it was finally discovered that this problem admits a polynomial time algorithm [GKKPV~'12]; however, the running time of this algorithm is $O(n^{881})$, and its relevance is thereby mostly of theoretical nature. A practically and structurally interesting special case of the $k$-MinSumRadius problem is that of small $k$. For the $2$-MinSumRadius problem, a near-quadratic time algorithm with expected running time $O(n^2 \log^2 n \log^2 \log n)$ was given over 30 years ago [Eppstein~'92]. We present the first improvement of this result, namely, a near-linear time algorithm to compute the $2$-MinSumRadius that runs in expected $O(n \log^2 n \log^2 \log n)$ time. We generalize this result to any constant dimension $d$, for which we give an $O(n^{2-1/(\lceil d/2\rceil + 1) + \varepsilon})$ time algorithm. Additionally, we give a near-quadratic time algorithm for $3$-MinSumRadius in the plane that runs in expected $O(n^2 \log^2 n \log^2 \log n)$ time. All of these algorithms rely on insights that uncover a surprisingly simple structure of optimal solutions: we can specify a linear number of lines out of which one separates one of the clusters from the remaining clusters in an optimal solution.

Formalized $1$-category theory forms a core component of various libraries of mathematical proofs. However, more sophisticated results in fields from algebraic topology to theoretical physics, where objects have "higher structure," rely on infinite-dimensional categories in place of $1$-dimensional categories, and $\infty$-category theory has thusfar proved unamenable to computer formalization. Using a new proof assistant called Rzk, which is designed to support Riehl-Shulman's simplicial extension of homotopy type theory for synthetic $\infty$-category theory, we provide the first formalizations of results from $\infty$-category theory. This includes in particular a formalization of the Yoneda lemma, often regarded as the fundamental theorem of category theory, a theorem which roughly states that an object of a given category is determined by its relationship to all of the other objects of the category. A key feature of our framework is that, thanks to the synthetic theory, many constructions are automatically natural or functorial. We plan to use Rzk to formalize further results from $\infty$-category theory, such as the theory of limits and colimits and adjunctions.

We study the accuracy of reconstruction of a family of functions $f_\epsilon(x)$, $x\in\mathbb R^2$, $\epsilon\to0$, from their discrete Radon transform data sampled with step size $O(\epsilon)$. For each $\epsilon>0$ sufficiently small, the function $f_\epsilon$ has a jump across a rough boundary $\mathcal S_\epsilon$, which is modeled by an $O(\epsilon)$-size perturbation of a smooth boundary $\mathcal S$. The function $H_0$, which describes the perturbation, is assumed to be of bounded variation. Let $f_\epsilon^{\text{rec}}$ denote the reconstruction, which is computed by interpolating discrete data and substituting it into a continuous inversion formula. We prove that $(f_\epsilon^{\text{rec}}-K_\epsilon*f_\epsilon)(x_0+\epsilon\check x)=O(\epsilon^{1/2}\ln(1/\epsilon))$, where $x_0\in\mathcal S$ and $K_\epsilon$ is an easily computable kernel.

For a prime $p$ and a positive integer $m$, let $\mathbb{F}_{p^m}$ be the finite field of characteristic $p$, and $\mathfrak{R}_l:=\mathbb{F}_{p^m}[v]/\langle v^l-v\rangle$ be a non-chain ring. In this paper, we study the $(\sigma,\delta)$-cyclic codes over $\mathfrak{R}_l$. Further, we study the application of these codes in finding DNA codes. Towards this, we first define a Gray map to find classical codes over $\mathbb{F}_{p^m}$ using codes over the ring $\mathfrak{R}_l$. Later, we find the conditions for a code to be reversible and a DNA code using $(\sigma, \delta)$-cyclic code. Finally, this algebraic method provides many classical and DNA codes of better parameters.

Given a graph $G=(V, E)$ and a list of available colors $L(v)$ for each vertex $v\in V$, where $L(v) \subseteq \{1, 2, \ldots, k\}$, List $k$-Coloring refers to the problem of assigning colors to the vertices of $G$ so that each vertex receives a color from its own list and no two neighboring vertices receive the same color. The decision version of the problem List $3$-Coloring is NP-complete even for bipartite graphs, and its complexity on comb-convex bipartite graphs has been an open problem. We give a polynomial-time algorithm to solve List $3$-Coloring for caterpillar-convex bipartite graphs, a superclass of comb-convex bipartite graphs. We also give a polynomial-time recognition algorithm for the class of caterpillar-convex bipartite graphs.

We give a fully dynamic algorithm maintaining a $(1-\varepsilon)$-approximate directed densest subgraph in $\tilde{O}(\log^3(n)/\varepsilon^6)$ amortized time or $\tilde{O}(\log^4(n)/\varepsilon^7)$ per edge update (where $\tilde{O}$ hides $\log\log$ factors), based on earlier work by Chekuri and Quanrud [arXiv:2210.02611]. This result improves on earlier work done by Sawlani and Wang [arXiv:1907.03037], which guarantees $O(\log^5(n)/\varepsilon^7)$ worst case time for edge insertions and deletions.

We describe two algorithms for multiplying n x n matrices using time and energy n^2 polylog(n) under basic models of classical physics. The first algorithm is for multiplying integer-valued matrices, and the second, quite different algorithm, is for Boolean matrix multiplication. We hope this work inspires a deeper consideration of physically plausible/realizable models of computing that might allow for algorithms which improve upon the runtimes and energy usages suggested by the parallel RAM model in which each operation requires one unit of time and one unit of energy.

北京阿比特科技有限公司