亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The introduction of Transformer model has led to tremendous advancements in sequence modeling, especially in text domain. However, the use of attention-based models for video understanding is still relatively unexplored. In this paper, we introduce Gated Adversarial Transformer (GAT) to enhance the applicability of attention-based models to videos. GAT uses a multi-level attention gate to model the relevance of a frame based on local and global contexts. This enables the model to understand the video at various granularities. Further, GAT uses adversarial training to improve model generalization. We propose temporal attention regularization scheme to improve the robustness of attention modules to adversarial examples. We illustrate the performance of GAT on the large-scale YoutTube-8M data set on the task of video categorization. We further show ablation studies along with quantitative and qualitative analysis to showcase the improvement.

相關內容

Abnormal event detection in video is a complex computer vision problem that has attracted significant attention in recent years. The complexity of the task arises from the commonly-adopted definition of an abnormal event, that is, a rarely occurring event that typically depends on the surrounding context. Following the standard formulation of abnormal event detection as outlier detection, we propose a background-agnostic framework that learns from training videos containing only normal events. Our framework is composed of an object detector, a set of appearance and motion auto-encoders, and a set of classifiers. Since our framework only looks at object detections, it can be applied to different scenes, provided that normal events are defined identically across scenes and that the single main factor of variation is the background. To overcome the lack of abnormal data during training, we propose an adversarial learning strategy for the auto-encoders. We create a scene-agnostic set of out-of-domain pseudo-abnormal examples, which are correctly reconstructed by the auto-encoders before applying gradient ascent on the pseudo-abnormal examples. We further utilize the pseudo-abnormal examples to serve as abnormal examples when training appearance-based and motion-based binary classifiers to discriminate between normal and abnormal latent features and reconstructions. We compare our framework with the state-of-the-art methods on four benchmark data sets, using various evaluation metrics. Compared to existing methods, the empirical results indicate that our approach achieves favorable performance on all data sets. In addition, we provide region-based and track-based annotations for two large-scale abnormal event detection data sets from the literature, namely ShanghaiTech and Subway.

In this paper we present a novel approach to the Audio-visual video parsing task that takes into cognizance how event categories bind to audio and visual modalities. The proposed parsing approach simultaneously detects the temporal boundaries in terms of start and end times of such events. This task can be naturally formulated as a Multimodal Multiple Instance Learning (MMIL) problem. We show how the MMIL task can benefit from the following techniques geared toward self and cross modal learning: (i) self-supervised pre-training based on highly aligned task audio-video grounding, (ii) global context aware attention and (iii) adversarial training. As for pre-training, we boostrap on the Uniter (style) %\todo{add citation} transformer architecture using a self-supervised objective audio-video grounding over the relatively large AudioSet dataset. This pretrained model is fine-tuned on an architectural variant of the state-of-the-art Hybrid Attention Network (HAN) %\todo{Add citation} that uses global context aware attention and adversarial training objectives for audio visual video parsing. %Further, we use a hybrid attention network and adversarial training to improve self and cross modal learning. Attentive MMIL pooling method is leveraged to adaptively explore useful audio and visual signals from different temporal segments and modalities. We present extensive experimental evaluations on the Look, Listen, and Parse (LLP) dataset and compare it against HAN. We also present several ablation tests to validate the effect of pre-training, attention and adversarial training.

In video object tracking, there exist rich temporal contexts among successive frames, which have been largely overlooked in existing trackers. In this work, we bridge the individual video frames and explore the temporal contexts across them via a transformer architecture for robust object tracking. Different from classic usage of the transformer in natural language processing tasks, we separate its encoder and decoder into two parallel branches and carefully design them within the Siamese-like tracking pipelines. The transformer encoder promotes the target templates via attention-based feature reinforcement, which benefits the high-quality tracking model generation. The transformer decoder propagates the tracking cues from previous templates to the current frame, which facilitates the object searching process. Our transformer-assisted tracking framework is neat and trained in an end-to-end manner. With the proposed transformer, a simple Siamese matching approach is able to outperform the current top-performing trackers. By combining our transformer with the recent discriminative tracking pipeline, our method sets several new state-of-the-art records on prevalent tracking benchmarks.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.

Event extraction is of practical utility in natural language processing. In the real world, it is a common phenomenon that multiple events existing in the same sentence, where extracting them are more difficult than extracting a single event. Previous works on modeling the associations between events by sequential modeling methods suffer a lot from the low efficiency in capturing very long-range dependencies. In this paper, we propose a novel Jointly Multiple Events Extraction (JMEE) framework to jointly extract multiple event triggers and arguments by introducing syntactic shortcut arcs to enhance information flow and attention-based graph convolution networks to model graph information. The experiment results demonstrate that our proposed framework achieves competitive results compared with state-of-the-art methods.

We study the problem of video-to-video synthesis, whose goal is to learn a mapping function from an input source video (e.g., a sequence of semantic segmentation masks) to an output photorealistic video that precisely depicts the content of the source video. While its image counterpart, the image-to-image synthesis problem, is a popular topic, the video-to-video synthesis problem is less explored in the literature. Without understanding temporal dynamics, directly applying existing image synthesis approaches to an input video often results in temporally incoherent videos of low visual quality. In this paper, we propose a novel video-to-video synthesis approach under the generative adversarial learning framework. Through carefully-designed generator and discriminator architectures, coupled with a spatio-temporal adversarial objective, we achieve high-resolution, photorealistic, temporally coherent video results on a diverse set of input formats including segmentation masks, sketches, and poses. Experiments on multiple benchmarks show the advantage of our method compared to strong baselines. In particular, our model is capable of synthesizing 2K resolution videos of street scenes up to 30 seconds long, which significantly advances the state-of-the-art of video synthesis. Finally, we apply our approach to future video prediction, outperforming several state-of-the-art competing systems.

The large amount of videos popping up every day, make it is more and more critical that key information within videos can be extracted and understood in a very short time. Video summarization, the task of finding the smallest subset of frames, which still conveys the whole story of a given video, is thus of great significance to improve efficiency of video understanding. In this paper, we propose a novel Dilated Temporal Relational Generative Adversarial Network (DTR-GAN) to achieve frame-level video summarization. Given a video, it can select a set of key frames, which contains the most meaningful and compact information. Specifically, DTR-GAN learns a dilated temporal relational generator and a discriminator with three-player loss in an adversarial manner. A new dilated temporal relation (DTR) unit is introduced for enhancing temporal representation capturing. The generator aims to select key frames by using DTR units to effectively exploit global multi-scale temporal context and to complement the commonly used Bi-LSTM. To ensure that the summaries capture enough key video representation from a global perspective rather than a trivial randomly shorten sequence, we present a discriminator that learns to enforce both the information completeness and compactness of summaries via a three-player loss. The three-player loss includes the generated summary loss, the random summary loss, and the real summary (ground-truth) loss, which play important roles for better regularizing the learned model to obtain useful summaries. Comprehensive experiments on two public datasets SumMe and TVSum show the superiority of our DTR-GAN over the state-of-the-art approaches.

In this paper, we propose a new long video dataset (called Track Long and Prosper - TLP) and benchmark for visual object tracking. The dataset consists of 50 videos from real world scenarios, encompassing a duration of over 400 minutes (676K frames), making it more than 20 folds larger in average duration per sequence and more than 8 folds larger in terms of total covered duration, as compared to existing generic datasets for visual tracking. The proposed dataset paves a way to suitably assess long term tracking performance and possibly train better deep learning architectures (avoiding/reducing augmentation, which may not reflect realistic real world behavior). We benchmark the dataset on 17 state of the art trackers and rank them according to tracking accuracy and run time speeds. We further categorize the test sequences with different attributes and present a thorough quantitative and qualitative evaluation. Our most interesting observations are (a) existing short sequence benchmarks fail to bring out the inherent differences in tracking algorithms which widen up while tracking on long sequences and (b) the accuracy of most trackers abruptly drops on challenging long sequences, suggesting the potential need of research efforts in the direction of long term tracking.

Recently, substantial research effort has focused on how to apply CNNs or RNNs to better extract temporal patterns from videos, so as to improve the accuracy of video classification. In this paper, however, we show that temporal information, especially longer-term patterns, may not be necessary to achieve competitive results on common video classification datasets. We investigate the potential of a purely attention based local feature integration. Accounting for the characteristics of such features in video classification, we propose a local feature integration framework based on attention clusters, and introduce a shifting operation to capture more diverse signals. We carefully analyze and compare the effect of different attention mechanisms, cluster sizes, and the use of the shifting operation, and also investigate the combination of attention clusters for multimodal integration. We demonstrate the effectiveness of our framework on three real-world video classification datasets. Our model achieves competitive results across all of these. In particular, on the large-scale Kinetics dataset, our framework obtains an excellent single model accuracy of 79.4% in terms of the top-1 and 94.0% in terms of the top-5 accuracy on the validation set. The attention clusters are the backbone of our winner solution at ActivityNet Kinetics Challenge 2017. Code and models will be released soon.

北京阿比特科技有限公司