We study numerical methods for solving a system of quasilinear stochastic partial differential equations known as the stochastic Landau-Lifshitz-Bloch (LLB) equation on a bounded domain in $\mathbb R^d$ for $d=1,2$. Our main results are estimates of the rate of convergence of the Finite Element Method to the solutions of stochastic LLB. To overcome the lack of regularity of the solution in the case $d=2$, we propose a Finite Element scheme for a regularised version of the equation. We then obtain error estimates of numerical solutions and for the solution of the regularised equation as well as the rate of convergence of this solution to the solution of the stochastic LLB equation. As a consequence, the convergence in probability of the approximate solutions to the solution of the stochastic LLB equation is derived. To the best of our knowledge this is the first result on error estimates for a system of stochastic quasilinear partial differential equations. A stronger result is obtained in the case $d=1$ due to a new regularity result for the LLB equation which allows us to avoid regularisation.
A popular way to estimate the parameters of a hidden Markov model (HMM) is direct numerical maximization (DNM) of the (log-)likelihood function. The advantages of employing the TMB (Kris- tensen et al., 2016) framework in R for this purpose were illustrated recently Bacri et al. (2022). In this paper, we present extensions of these results in two directions. First, we present a practical way to obtain uncertainty estimates in form of confidence intervals (CIs) for the so-called smoothing probabilities at moderate computational and programming effort via TMB. Our approach thus permits to avoid computer-intensive bootstrap methods. By means of several ex- amples, we illustrate patterns present for the derived CIs. Secondly, we investigate the performance of popular optimizers available in R when estimating HMMs via DNM. Hereby, our focus lies on the potential benefits of employing TMB. Investigated criteria via a number of simulation studies are convergence speed, accuracy, and the impact of (poor) initial values. Our findings suggest that all optimizers considered benefit in terms of speed from using the gradient supplied by TMB. When supplying both gradient and Hessian from TMB, the number of iterations reduces, suggesting a more efficient convergence to the maximum of the log-likelihood. Last, we briefly point out potential advantages of a hybrid approach.
Spatial Gaussian process regression models typically contain finite dimensional covariance parameters that need to be estimated from the data. We study the Bayesian estimation of covariance parameters including the nugget parameter in a general class of stationary covariance functions under fixed-domain asymptotics, which is theoretically challenging due to the increasingly strong dependence among spatial observations. We propose a novel adaptation of the Schwartz's consistency theorem for showing posterior contraction rates of the covariance parameters including the nugget. We derive a new polynomial evidence lower bound, and propose consistent higher-order quadratic variation estimators that satisfy concentration inequalities with exponentially small tails. Our Bayesian fixed-domain asymptotics theory leads to explicit posterior contraction rates for the microergodic and nugget parameters in the isotropic Matern covariance function under a general stratified sampling design. We verify our theory and the Bayesian predictive performance in simulation studies and an application to sea surface temperature data.
We tackle the problem of efficiently approximating the volume of convex polytopes, when these are given in three different representations: H-polytopes, which have been studied extensively, V-polytopes, and zonotopes (Z-polytopes). We design a novel practical Multiphase Monte Carlo algorithm that leverages random walks based on billiard trajectories, as well as a new empirical convergence tests and a simulated annealing schedule of adaptive convex bodies. After tuning several parameters of our proposed method, we present a detailed experimental evaluation of our tuned algorithm using a rich dataset containing Birkhoff polytopes and polytopes from structural biology. Our open-source implementation tackles problems that have been intractable so far, offering the first software to scale up in thousands of dimensions for H-polytopes and in the hundreds for V- and Z-polytopes on moderate hardware. Last, we illustrate our software in evaluating Z-polytope approximations.
This paper focuses on the numerical scheme of highly nonlinear neutral multiple-delay stohchastic McKean-Vlasov equation (NMSMVE) by virtue of the stochastic particle method. First, under general assumptions, the results about propagation of chaos in $\mathcal{L}^p$ sense are shown. Then the tamed Euler-Maruyama scheme to the corresponding particle system is established and the convergence rate in $\mathcal{L}^p$ sense is obtained. Furthermore, combining these two results gives the convergence error between the objective NMSMVE and numerical approximation, which is related to the particle number and step size. Finally, two numerical examples are provided to support the finding.
In this paper, we propose a direct probing method for the inverse problem based on the Eikonal equation. For the Eikonal equation with a point source, the viscosity solution represents the least travel time of wave fields from the source to the point at the high-frequency limit. The corresponding inverse problem is to determine the inhomogeneous wave-speed distribution from the first-arrival time data at the measurement surfaces corresponding to distributed point sources, which is called transmission travel-time tomography. At the low-frequency regime, the reconstruction approximates the frequency-depend wave-speed distribution. We analyze the Eikonal inverse problem and show that it is highly ill-posed. Then we developed a direct probing method that incorporates the solution analysis of the Eikonal equation and several aspects of the velocity models. When the wave-speed distribution has a small variation from the homogeneous medium, we reconstruct the inhomogeneous media using the filtered back projection method. For the high-contrast media, we assume a background medium and develop the adjoint-based back projection method to identify the variations of the medium from the assumed background.
In many bandit problems, the maximal reward achievable by a policy is often unknown in advance. We consider the problem of estimating the optimal policy value in the sublinear data regime before the optimal policy is even learnable. We refer to this as $V^*$ estimation. It was recently shown that fast $V^*$ estimation is possible but only in disjoint linear bandits with Gaussian covariates. Whether this is possible for more realistic context distributions has remained an open and important question for tasks such as model selection. In this paper, we first provide lower bounds showing that this general problem is hard. However, under stronger assumptions, we give an algorithm and analysis proving that $\widetilde{\mathcal{O}}(\sqrt{d})$ sublinear estimation of $V^*$ is indeed information-theoretically possible, where $d$ is the dimension. We then present a more practical, computationally efficient algorithm that estimates a problem-dependent upper bound on $V^*$ that holds for general distributions and is tight when the context distribution is Gaussian. We prove our algorithm requires only $\widetilde{\mathcal{O}}(\sqrt{d})$ samples to estimate the upper bound. We use this upper bound and the estimator to obtain novel and improved guarantees for several applications in bandit model selection and testing for treatment effects.
Despite being highly over-parametrized, and having the ability to fully interpolate the training data, deep networks are known to generalize well to unseen data. It is now understood that part of the reason for this is that the training algorithms used have certain implicit regularization properties that ensure interpolating solutions with "good" properties are found. This is best understood in linear over-parametrized models where it has been shown that the celebrated stochastic gradient descent (SGD) algorithm finds an interpolating solution that is closest in Euclidean distance to the initial weight vector. Different regularizers, replacing Euclidean distance with Bregman divergence, can be obtained if we replace SGD with stochastic mirror descent (SMD). Empirical observations have shown that in the deep network setting, SMD achieves a generalization performance that is different from that of SGD (and which depends on the choice of SMD's potential function. In an attempt to begin to understand this behavior, we obtain the generalization error of SMD for over-parametrized linear models for a binary classification problem where the two classes are drawn from a Gaussian mixture model. We present simulation results that validate the theory and, in particular, introduce two data models, one for which SMD with an $\ell_2$ regularizer (i.e., SGD) outperforms SMD with an $\ell_1$ regularizer, and one for which the reverse happens.
Synthetic control (SC) methods are commonly used to estimate the treatment effect on a single treated unit in panel data settings. An SC is a weighted average of control units built to match the treated unit, with weights typically estimated by regressing (summaries of) pre-treatment outcomes and measured covariates of the treated unit to those of the control units. However, it has been established that in the absence of a good fit, such regression estimator will generally perform poorly. In this paper, we introduce a proximal causal inference framework to formalize identification and inference for both the SC and ultimately the treatment effect on the treated, based on the observation that control units not contributing to the construction of an SC can be repurposed as proxies of latent confounders. We view the difference in the post-treatment outcomes between the treated unit and the SC as a time series, which opens the door to various time series methods for treatment effect estimation. The proposed framework can accommodate nonlinear models, which allows for binary and count outcomes that are understudied in the SC literature. We illustrate with simulation studies and an application to evaluation of the 1990 German Reunification.
The problems of selecting partial correlation and causality graphs for count data are considered. A parameter driven generalized linear model is used to describe the observed multivariate time series of counts. Partial correlation and causality graphs corresponding to this model explain the dependencies between each time series of the multivariate count data. In order to estimate these graphs with tunable sparsity, an appropriate likelihood function maximization is regularized with an l1-type constraint. A novel MCEM algorithm is proposed to iteratively solve this regularized MLE. Asymptotic convergence results are proved for the sequence generated by the proposed MCEM algorithm with l1-type regularization. The algorithm is first successfully tested on simulated data. Thereafter, it is applied to observed weekly dengue disease counts from each ward of Greater Mumbai city. The interdependence of various wards in the proliferation of the disease is characterized by the edges of the inferred partial correlation graph. On the other hand, the relative roles of various wards as sources and sinks of dengue spread is quantified by the number and weights of the directed edges originating from and incident upon each ward. From these estimated graphs, it is observed that some special wards act as epicentres of dengue spread even though their disease counts are relatively low.
We study Stochastic Gradient Descent with AdaGrad stepsizes: a popular adaptive (self-tuning) method for first-order stochastic optimization. Despite being well studied, existing analyses of this method suffer from various shortcomings: they either assume some knowledge of the problem parameters, impose strong global Lipschitz conditions, or fail to give bounds that hold with high probability. We provide a comprehensive analysis of this basic method without any of these limitations, in both the convex and non-convex (smooth) cases, that additionally supports a general ``affine variance'' noise model and provides sharp rates of convergence in both the low-noise and high-noise~regimes.