亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In many bandit problems, the maximal reward achievable by a policy is often unknown in advance. We consider the problem of estimating the optimal policy value in the sublinear data regime before the optimal policy is even learnable. We refer to this as $V^*$ estimation. It was recently shown that fast $V^*$ estimation is possible but only in disjoint linear bandits with Gaussian covariates. Whether this is possible for more realistic context distributions has remained an open and important question for tasks such as model selection. In this paper, we first provide lower bounds showing that this general problem is hard. However, under stronger assumptions, we give an algorithm and analysis proving that $\widetilde{\mathcal{O}}(\sqrt{d})$ sublinear estimation of $V^*$ is indeed information-theoretically possible, where $d$ is the dimension. We then present a more practical, computationally efficient algorithm that estimates a problem-dependent upper bound on $V^*$ that holds for general distributions and is tight when the context distribution is Gaussian. We prove our algorithm requires only $\widetilde{\mathcal{O}}(\sqrt{d})$ samples to estimate the upper bound. We use this upper bound and the estimator to obtain novel and improved guarantees for several applications in bandit model selection and testing for treatment effects.

相關內容

We study the design of sample-efficient algorithms for reinforcement learning in the presence of rich, high-dimensional observations, formalized via the Block MDP problem. Existing algorithms suffer from either 1) computational intractability, 2) strong statistical assumptions that are not necessarily satisfied in practice, or 3) suboptimal sample complexity. We address these issues by providing the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level, with minimal statistical assumptions. Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics, a learning objective in which the aim is to predict the learner's own action from the current observation and observations in the (potentially distant) future. MusIK is simple and flexible, and can efficiently take advantage of general-purpose function approximation. Our analysis leverages several new techniques tailored to non-optimistic exploration algorithms, which we anticipate will find broader use.

We propose an algorithm for an optimal adaptive selection of points from the design domain of input random variables that are needed for an accurate estimation of failure probability and the determination of the boundary between safe and failure domains. The method is particularly useful when each evaluation of the performance function g(x) is very expensive and the function can be characterized as either highly nonlinear, noisy, or even discrete-state (e.g., binary). In such cases, only a limited number of calls is feasible, and gradients of g(x) cannot be used. The input design domain is progressively segmented by expanding and adaptively refining mesh-like lock-free geometrical structure. The proposed triangulation-based approach effectively combines the features of simulation and approximation methods. The algorithm performs two independent tasks: (i) the estimation of probabilities through an ingenious combination of deterministic cubature rules and the application of the divergence theorem and (ii) the sequential extension of the experimental design with new points. The sequential selection of points from the design domain for future evaluation of g(x) is carried out through a new learning function, which maximizes instantaneous information gain in terms of the probability classification that corresponds to the local region. The extension may be halted at any time, e.g., when sufficiently accurate estimations are obtained. Due to the use of the exact geometric representation in the input domain, the algorithm is most effective for problems of a low dimension, not exceeding eight. The method can handle random vectors with correlated non-Gaussian marginals. The estimation accuracy can be improved by employing a smooth surrogate model. Finally, we define new factors of global sensitivity to failure based on the entire failure surface weighted by the density of the input random vector.

We study the unbalanced optimal transport (UOT) problem, where the marginal constraints are enforced using Maximum Mean Discrepancy (MMD) regularization. Our study is motivated by the observation that existing works on UOT have mainly focused on regularization based on $\phi$-divergence (e.g., KL). The role of MMD, which belongs to the complementary family of integral probability metrics (IPMs), as a regularizer in the context of UOT seems to be less understood. Our main result is based on Fenchel duality, using which we are able to study the properties of MMD-regularized UOT (MMD-UOT). One interesting outcome of this duality result is that MMD-UOT induces a novel metric over measures, which again belongs to the IPM family. Further, we present finite-sample-based convex programs for estimating MMD-UOT and the corresponding barycenter. Under mild conditions, we prove that our convex-program-based estimators are consistent, and the estimation error decays at a rate $\mathcal{O}\left(m^{-\frac{1}{2}}\right)$, where $m$ is the number of samples from the source/target measures. Finally, we discuss how these convex programs can be solved efficiently using (accelerated) projected gradient descent. We conduct diverse experiments to show that MMD-UOT is a promising alternative to $\phi$-divergence-regularized UOT in machine learning applications.

Mixture distributions with dynamic weights are an efficient way of modeling loss data characterized by heavy tails. However, maximum likelihood estimation of this family of models is difficult, mostly because of the need to evaluate numerically an intractable normalizing constant. In such a setup, simulation-based estimation methods are an appealing alternative. The approximate maximum likelihood estimation (AMLE) approach is employed. It is a general method that can be applied to mixtures with any component densities, as long as simulation is feasible. The focus is on the dynamic lognormal-generalized Pareto distribution, and the Cram\'er - von Mises distance is used to measure the discrepancy between observed and simulated samples. After deriving the theoretical properties of the estimators, a hybrid procedure is developed, where standard maximum likelihood is first employed to determine the bounds of the uniform priors required as input for AMLE. Simulation experiments and two real-data applications suggest that this approach yields a major improvement with respect to standard maximum likelihood estimation.

We study how a principal can efficiently and effectively intervene on the rewards of a previously unseen learning agent in order to induce desirable outcomes. This is relevant to many real-world settings like auctions or taxation, where the principal may not know the learning behavior nor the rewards of real people. Moreover, the principal should be few-shot adaptable and minimize the number of interventions, because interventions are often costly. We introduce MERMAIDE, a model-based meta-learning framework to train a principal that can quickly adapt to out-of-distribution agents with different learning strategies and reward functions. We validate this approach step-by-step. First, in a Stackelberg setting with a best-response agent, we show that meta-learning enables quick convergence to the theoretically known Stackelberg equilibrium at test time, although noisy observations severely increase the sample complexity. We then show that our model-based meta-learning approach is cost-effective in intervening on bandit agents with unseen explore-exploit strategies. Finally, we outperform baselines that use either meta-learning or agent behavior modeling, in both $0$-shot and $K=1$-shot settings with partial agent information.

We study the trade-off between expectation and tail risk for regret distribution in the stochastic multi-armed bandit problem. We fully characterize the interplay among three desired properties for policy design: worst-case optimality, instance-dependent consistency, and light-tailed risk. We show how the order of expected regret exactly affects the decaying rate of the regret tail probability for both the worst-case and instance-dependent scenario. A novel policy is proposed to characterize the optimal regret tail probability for any regret threshold. Concretely, for any given $\alpha\in[1/2, 1)$ and $\beta\in[0, \alpha]$, our policy achieves a worst-case expected regret of $\tilde O(T^\alpha)$ (we call it $\alpha$-optimal) and an instance-dependent expected regret of $\tilde O(T^\beta)$ (we call it $\beta$-consistent), while enjoys a probability of incurring an $\tilde O(T^\delta)$ regret ($\delta\geq\alpha$ in the worst-case scenario and $\delta\geq\beta$ in the instance-dependent scenario) that decays exponentially with a polynomial $T$ term. Such decaying rate is proved to be best achievable. Moreover, we discover an intrinsic gap of the optimal tail rate under the instance-dependent scenario between whether the time horizon $T$ is known a priori or not. Interestingly, when it comes to the worst-case scenario, this gap disappears. Finally, we extend our proposed policy design to (1) a stochastic multi-armed bandit setting with non-stationary baseline rewards, and (2) a stochastic linear bandit setting. Our results reveal insights on the trade-off between regret expectation and regret tail risk for both worst-case and instance-dependent scenarios, indicating that more sub-optimality and inconsistency leave space for more light-tailed risk of incurring a large regret, and that knowing the planning horizon in advance can make a difference on alleviating tail risks.

To estimate causal effects, analysts performing observational studies in health settings utilize several strategies to mitigate bias due to confounding by indication. There are two broad classes of approaches for these purposes: use of confounders and instrumental variables (IVs). Because such approaches are largely characterized by untestable assumptions, analysts must operate under an indefinite paradigm that these methods will work imperfectly. In this tutorial, we formalize a set of general principles and heuristics for estimating causal effects in the two approaches when the assumptions are potentially violated. This crucially requires reframing the process of observational studies as hypothesizing potential scenarios where the estimates from one approach are less inconsistent than the other. While most of our discussion of methodology centers around the linear setting, we touch upon complexities in non-linear settings and flexible procedures such as target minimum loss-based estimation (TMLE) and double machine learning (DML). To demonstrate the application of our principles, we investigate the use of donepezil off-label for mild cognitive impairment (MCI). We compare and contrast results from confounder and IV methods, traditional and flexible, within our analysis and to a similar observational study and clinical trial.

Estimating optimal dynamic policies from offline data is a fundamental problem in dynamic decision making. In the context of causal inference, the problem is known as estimating the optimal dynamic treatment regime. Even though there exists a plethora of methods for estimation, constructing confidence intervals for the value of the optimal regime and structural parameters associated with it is inherently harder, as it involves non-linear and non-differentiable functionals of un-known quantities that need to be estimated. Prior work resorted to sub-sample approaches that can deteriorate the quality of the estimate. We show that a simple soft-max approximation to the optimal treatment regime, for an appropriately fast growing temperature parameter, can achieve valid inference on the truly optimal regime. We illustrate our result for a two-period optimal dynamic regime, though our approach should directly extend to the finite horizon case. Our work combines techniques from semi-parametric inference and $g$-estimation, together with an appropriate triangular array central limit theorem, as well as a novel analysis of the asymptotic influence and asymptotic bias of softmax approximations.

Submodular optimization generalizes many classic problems in combinatorial optimization and has recently found a wide range of applications in machine learning (e.g., feature engineering and active learning). For many large-scale optimization problems, we are often concerned with the adaptivity complexity of an algorithm, which quantifies the number of sequential rounds where polynomially-many independent function evaluations can be executed in parallel. While low adaptivity is ideal, it is not sufficient for a distributed algorithm to be efficient, since in many practical applications of submodular optimization the number of function evaluations becomes prohibitively expensive. Motivated by these applications, we study the adaptivity and query complexity of adaptive submodular optimization. Our main result is a distributed algorithm for maximizing a monotone submodular function with cardinality constraint $k$ that achieves a $(1-1/e-\varepsilon)$-approximation in expectation. This algorithm runs in $O(\log(n))$ adaptive rounds and makes $O(n)$ calls to the function evaluation oracle in expectation. The approximation guarantee and query complexity are optimal, and the adaptivity is nearly optimal. Moreover, the number of queries is substantially less than in previous works. Last, we extend our results to the submodular cover problem to demonstrate the generality of our algorithm and techniques.

We study a class of generalized linear programs (GLP) in a large-scale setting, which includes simple, possibly nonsmooth convex regularizer and simple convex set constraints. By reformulating (GLP) as an equivalent convex-concave min-max problem, we show that the linear structure in the problem can be used to design an efficient, scalable first-order algorithm, to which we give the name \emph{Coordinate Linear Variance Reduction} (\textsc{clvr}; pronounced "clever"). \textsc{clvr} yields improved complexity results for (GLP) that depend on the max row norm of the linear constraint matrix in (GLP) rather than the spectral norm. When the regularization terms and constraints are separable, \textsc{clvr} admits an efficient lazy update strategy that makes its complexity bounds scale with the number of nonzero elements of the linear constraint matrix in (GLP) rather than the matrix dimensions. On the other hand, for the special case of linear programs, by exploiting sharpness, we propose a restart scheme for \textsc{clvr} to obtain empirical linear convergence. Then we show that Distributionally Robust Optimization (DRO) problems with ambiguity sets based on both $f$-divergence and Wasserstein metrics can be reformulated as (GLPs) by introducing sparsely connected auxiliary variables. We complement our theoretical guarantees with numerical experiments that verify our algorithm's practical effectiveness, in terms of wall-clock time and number of data passes.

北京阿比特科技有限公司