亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study a class of generalized linear programs (GLP) in a large-scale setting, which includes simple, possibly nonsmooth convex regularizer and simple convex set constraints. By reformulating (GLP) as an equivalent convex-concave min-max problem, we show that the linear structure in the problem can be used to design an efficient, scalable first-order algorithm, to which we give the name \emph{Coordinate Linear Variance Reduction} (\textsc{clvr}; pronounced "clever"). \textsc{clvr} yields improved complexity results for (GLP) that depend on the max row norm of the linear constraint matrix in (GLP) rather than the spectral norm. When the regularization terms and constraints are separable, \textsc{clvr} admits an efficient lazy update strategy that makes its complexity bounds scale with the number of nonzero elements of the linear constraint matrix in (GLP) rather than the matrix dimensions. On the other hand, for the special case of linear programs, by exploiting sharpness, we propose a restart scheme for \textsc{clvr} to obtain empirical linear convergence. Then we show that Distributionally Robust Optimization (DRO) problems with ambiguity sets based on both $f$-divergence and Wasserstein metrics can be reformulated as (GLPs) by introducing sparsely connected auxiliary variables. We complement our theoretical guarantees with numerical experiments that verify our algorithm's practical effectiveness, in terms of wall-clock time and number of data passes.

相關內容

Echo State Networks (ESN) are a type of Recurrent Neural Network that yields promising results in representing time series and nonlinear dynamic systems. Although they are equipped with a very efficient training procedure, Reservoir Computing strategies, such as the ESN, require high-order networks, i.e., many neurons, resulting in a large number of states that are magnitudes higher than the number of model inputs and outputs. A large number of states not only makes the time-step computation more costly but also may pose robustness issues, especially when applying ESNs to problems such as Model Predictive Control (MPC) and other optimal control problems. One way to circumvent this complexity issue is through Model Order Reduction strategies such as the Proper Orthogonal Decomposition (POD) and its variants (POD-DEIM), whereby we find an equivalent lower order representation to an already trained high dimension ESN. To this end, this work aims to investigate and analyze the performance of POD methods in Echo State Networks, evaluating their effectiveness through the Memory Capacity (MC) of the POD-reduced network compared to the original (full-order) ESN. We also perform experiments on two numerical case studies: a NARMA10 difference equation and an oil platform containing two wells and one riser. The results show that there is little loss of performance comparing the original ESN to a POD-reduced counterpart and that the performance of a POD-reduced ESN tends to be superior to a normal ESN of the same size. Also, the POD-reduced network achieves speedups of around $80\%$ compared to the original ESN.

In deep learning, often the training process finds an interpolator (a solution with 0 training loss), but the test loss is still low. This phenomenon, known as benign overfitting, is a major mystery that received a lot of recent attention. One common mechanism for benign overfitting is implicit regularization, where the training process leads to additional properties for the interpolator, often characterized by minimizing certain norms. However, even for a simple sparse linear regression problem $y = \beta^{*\top} x +\xi$ with sparse $\beta^*$, neither minimum $\ell_1$ or $\ell_2$ norm interpolator gives the optimal test loss. In this work, we give a different parametrization of the model which leads to a new implicit regularization effect that combines the benefit of $\ell_1$ and $\ell_2$ interpolators. We show that training our new model via gradient descent leads to an interpolator with near-optimal test loss. Our result is based on careful analysis of the training dynamics and provides another example of implicit regularization effect that goes beyond norm minimization.

This paper reveals that every image can be understood as a first-order norm+linear autoregressive process, referred to as FINOLA, where norm+linear denotes the use of normalization before the linear model. We demonstrate that images of size 256$\times$256 can be reconstructed from a compressed vector using autoregression up to a 16$\times$16 feature map, followed by upsampling and convolution. This discovery sheds light on the underlying partial differential equations (PDEs) governing the latent feature space. Additionally, we investigate the application of FINOLA for self-supervised learning through a simple masked prediction technique. By encoding a single unmasked quadrant block, we can autoregressively predict the surrounding masked region. Remarkably, this pre-trained representation proves effective for image classification and object detection tasks, even in lightweight networks, without requiring fine-tuning. The code will be made publicly available.

Estimating causal effects from observational data is a central problem in many domains. A general approach is to balance covariates with weights such that the distribution of the data mimics randomization. We present generalized balancing weights, Neural Balancing Weights (NBW), to estimate the causal effects of an arbitrary mixture of discrete and continuous interventions. The weights were obtained through direct estimation of the density ratio between the source and balanced distributions by optimizing the variational representation of $f$-divergence. For this, we selected $\alpha$-divergence as it presents efficient optimization because it has an estimator whose sample complexity is independent of its ground truth value and unbiased mini-batch gradients; moreover, it is advantageous for the vanishing-gradient problem. In addition, we provide the following two methods for estimating the balancing weights: improving the generalization performance of the balancing weights and checking the balance of the distribution changed by the weights. Finally, we discuss the sample size requirements for the weights as a general problem of a curse of dimensionality when balancing multidimensional data. Our study provides a basic approach for estimating the balancing weights of multidimensional data using variational $f$-divergences.

Dimensionality reduction (DR) algorithms compress high-dimensional data into a lower dimensional representation while preserving important features of the data. DR is a critical step in many analysis pipelines as it enables visualisation, noise reduction and efficient downstream processing of the data. In this work, we introduce the ProbDR variational framework, which interprets a wide range of classical DR algorithms as probabilistic inference algorithms in this framework. ProbDR encompasses PCA, CMDS, LLE, LE, MVU, diffusion maps, kPCA, Isomap, (t-)SNE, and UMAP. In our framework, a low-dimensional latent variable is used to construct a covariance, precision, or a graph Laplacian matrix, which can be used as part of a generative model for the data. Inference is done by optimizing an evidence lower bound. We demonstrate the internal consistency of our framework and show that it enables the use of probabilistic programming languages (PPLs) for DR. Additionally, we illustrate that the framework facilitates reasoning about unseen data and argue that our generative models approximate Gaussian processes (GPs) on manifolds. By providing a unified view of DR, our framework facilitates communication, reasoning about uncertainties, model composition, and extensions, particularly when domain knowledge is present.

Within the optimization community, the question of how to generate new optimization problems has been gaining traction in recent years. Within topics such as instance space analysis (ISA), the generation of new problems can provide new benchmarks which are not yet explored in existing research. Beyond that, this function generation can also be exploited for solving complex real-world optimization problems. By generating functions with similar properties to the target problem, we can create a robust test set for algorithm selection and configuration. However, the generation of functions with specific target properties remains challenging. While features exist to capture low-level landscape properties, they might not always capture the intended high-level features. We show that a genetic programming (GP) approach guided by these exploratory landscape analysis (ELA) properties is not always able to find satisfying functions. Our results suggest that careful considerations of the weighting of landscape properties, as well as the distance measure used, might be required to evolve functions that are sufficiently representative to the target landscape.

These notes are an overview of some classical linear methods in Multivariate Data Analysis. This is a good old domain, well established since the 60's, and refreshed timely as a key step in statistical learning. It can be presented as part of statistical learning, or as dimensionality reduction with a geometric flavor. Both approaches are tightly linked: it is easier to learn patterns from data in low dimensional spaces than in high-dimensional spaces. It is shown how a diversity of methods and tools boil down to a single core methods, PCA with SVD, such that the efforts to optimize codes for analyzing massive data sets like distributed memory and task-based programming or to improve the efficiency of the algorithms like Randomised SVD can focus on this shared core method, and benefit to all methods.

We study an edge-weighted online stochastic \emph{Generalized Assignment Problem} with \emph{unknown} Poisson arrivals. In this model, we consider a bipartite graph that contains offline bins and online items, where each offline bin is associated with a $D$-dimensional capacity vector and each online item is with a $D$-dimensional demand vector. Online arrivals are sampled from a set of online item types which follow independent but not necessarily identical Poisson processes. The arrival rate for each Poisson process is unknown. Each online item will either be packed into an offline bin which will deduct the allocated bin's capacity vector and generate a reward, or be rejected. The decision should be made immediately and irrevocably upon its arrival. Our goal is to maximize the total reward of the allocation without violating the capacity constraints. We provide a sample-based multi-phase algorithm by utilizing both pre-existing offline data (named historical data) and sequentially revealed online data. We establish its performance guarantee measured by a competitive ratio. In a simplified setting where $D=1$ and all capacities and demands are equal to $1$, we prove that the ratio depends on the number of historical data size and the minimum number of arrivals for each online item type during the planning horizon, from which we analyze the effect of the historical data size and the Poisson arrival model on the algorithm's performance. We further generalize the algorithm to the general multidimensional and multi-demand setting, and present its parametric performance guarantee. The effect of the capacity's (demand's) dimension on the algorithm's performance is further analyzed based on the established parametric form. Finally, we demonstrate the effectiveness of our algorithms numerically.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

北京阿比特科技有限公司