In deep learning, often the training process finds an interpolator (a solution with 0 training loss), but the test loss is still low. This phenomenon, known as benign overfitting, is a major mystery that received a lot of recent attention. One common mechanism for benign overfitting is implicit regularization, where the training process leads to additional properties for the interpolator, often characterized by minimizing certain norms. However, even for a simple sparse linear regression problem $y = \beta^{*\top} x +\xi$ with sparse $\beta^*$, neither minimum $\ell_1$ or $\ell_2$ norm interpolator gives the optimal test loss. In this work, we give a different parametrization of the model which leads to a new implicit regularization effect that combines the benefit of $\ell_1$ and $\ell_2$ interpolators. We show that training our new model via gradient descent leads to an interpolator with near-optimal test loss. Our result is based on careful analysis of the training dynamics and provides another example of implicit regularization effect that goes beyond norm minimization.
We present a simple linear regression based approach for learning the weights and biases of a neural network, as an alternative to standard gradient based backpropagation. The present work is exploratory in nature, and we restrict the description and experiments to (i) simple feedforward neural networks, (ii) scalar (single output) regression problems, and (iii) invertible activation functions. However, the approach is intended to be extensible to larger, more complex architectures. The key idea is the observation that the input to every neuron in a neural network is a linear combination of the activations of neurons in the previous layer, as well as the parameters (weights and biases) of the layer. If we are able to compute the ideal total input values to every neuron by working backwards from the output, we can formulate the learning problem as a linear least squares problem which iterates between updating the parameters and the activation values. We present an explicit algorithm that implements this idea, and we show that (at least for small problems) the approach is more stable and faster than gradient-based methods.
The incompleteness of the seismic data caused by missing traces along the spatial extension is a common issue in seismic acquisition due to the existence of obstacles and economic constraints, which severely impairs the imaging quality of subsurface geological structures. Recently, deep learningbased seismic interpolation methods have attained promising progress, while achieving stable training of generative adversarial networks is not easy, and performance degradation is usually notable if the missing patterns in the testing and training do not match. In this paper, we propose a novel seismic denoising diffusion implicit model with resampling. The model training is established on the denoising diffusion probabilistic model, where U-Net is equipped with the multi-head self-attention to match the noise in each step. The cosine noise schedule, serving as the global noise configuration, promotes the high utilization of known trace information by accelerating the passage of the excessive noise stages. The model inference utilizes the denoising diffusion implicit model, conditioning on the known traces, to enable high-quality interpolation with fewer diffusion steps. To enhance the coherency between the known traces and the missing traces within each reverse step, the inference process integrates a resampling strategy to achieve an information recap on the former interpolated traces. Extensive experiments conducted on synthetic and field seismic data validate the superiority of our model and its robustness to various missing patterns. In addition, uncertainty quantification and ablation studies are also investigated.
Understanding the implicit regularization imposed by neural network architectures and gradient based optimization methods is a key challenge in deep learning and AI. In this work we provide sharp results for the implicit regularization imposed by the gradient flow of Diagonal Linear Networks (DLNs) in the over-parameterized regression setting and, potentially surprisingly, link this to the phenomenon of phase transitions in generalized hardness of approximation (GHA). GHA generalizes the phenomenon of hardness of approximation from computer science to, among others, continuous and robust optimization. It is well-known that the $\ell^1$-norm of the gradient flow of DLNs with tiny initialization converges to the objective function of basis pursuit. We improve upon these results by showing that the gradient flow of DLNs with tiny initialization approximates minimizers of the basis pursuit optimization problem (as opposed to just the objective function), and we obtain new and sharp convergence bounds w.r.t.\ the initialization size. Non-sharpness of our results would imply that the GHA phenomenon would not occur for the basis pursuit optimization problem -- which is a contradiction -- thus implying sharpness. Moreover, we characterize $\textit{which}$ $\ell_1$ minimizer of the basis pursuit problem is chosen by the gradient flow whenever the minimizer is not unique. Interestingly, this depends on the depth of the DLN.
This study introduces a novel and efficient least squares based method for rectangle fitting, using a continuous fitness function that approximates a unit square accurately. The proposed method is compared with the existing method in the literature using both simulated data and real data. The real data is derived from aerial photogrammetry point clouds of a rectangular building. The simulated tests show that the proposed method performs better than the reference method, reducing the root-mean-square error by about 93% and 14% for clean datasets and noisy point clouds, respectively. The proposed method also improves the fitting of the real dataset by about 81%, achieving centimetre level accuracy. Furthermore, the test results show that the proposed method converges in fewer than 10 iterations.
Bayesian deep learning approaches assume model parameters to be latent random variables and infer posterior distributions to quantify uncertainty, increase safety and trust, and prevent overconfident and unpredictable behavior. However, weight-space priors are model-specific, can be difficult to interpret and are hard to specify. Instead, we apply a Dirichlet prior in predictive space and perform approximate function-space variational inference. To this end, we interpret conventional categorical predictions from stochastic neural network classifiers as samples from an implicit Dirichlet distribution. By adapting the inference, the same function-space prior can be combined with different models without affecting model architecture or size. We illustrate the flexibility and efficacy of such a prior with toy experiments and demonstrate scalability, improved uncertainty quantification and adversarial robustness with large-scale image classification experiments.
In many applications, when building linear regression models, it is important to account for the presence of outliers, i.e., corrupted input data points. Such problems can be formulated as mixed-integer optimization problems involving cubic terms, each given by the product of a binary variable and a quadratic term of the continuous variables. Existing approaches in the literature, typically relying on the linearization of the cubic terms using big-M constraints, suffer from weak relaxation and poor performance in practice. In this work we derive stronger second-order conic relaxations that do not involve big-M constraints. Our computational experiments indicate that the proposed formulations are several orders-of-magnitude faster than existing big-M formulations in the literature for this problem.
Recent years have seen many insights on deep learning optimisation being brought forward by finding implicit regularisation effects of commonly used gradient-based optimisers. Understanding implicit regularisation can not only shed light on optimisation dynamics, but it can also be used to improve performance and stability across problem domains, from supervised learning to two-player games such as Generative Adversarial Networks. An avenue for finding such implicit regularisation effects has been quantifying the discretisation errors of discrete optimisers via continuous-time flows constructed by backward error analysis (BEA). The current usage of BEA is not without limitations, since not all the vector fields of continuous-time flows obtained using BEA can be written as a gradient, hindering the construction of modified losses revealing implicit regularisers. In this work, we provide a novel approach to use BEA, and show how our approach can be used to construct continuous-time flows with vector fields that can be written as gradients. We then use this to find previously unknown implicit regularisation effects, such as those induced by multiple stochastic gradient descent steps while accounting for the exact data batches used in the updates, and in generally differentiable two-player games.
The literature on "benign overfitting" in overparameterized models has been mostly restricted to regression or binary classification; however, modern machine learning operates in the multiclass setting. Motivated by this discrepancy, we study benign overfitting in multiclass linear classification. Specifically, we consider the following training algorithms on separable data: (i) empirical risk minimization (ERM) with cross-entropy loss, which converges to the multiclass support vector machine (SVM) solution; (ii) ERM with least-squares loss, which converges to the min-norm interpolating (MNI) solution; and, (iii) the one-vs-all SVM classifier. First, we provide a simple sufficient deterministic condition under which all three algorithms lead to classifiers that interpolate the training data and have equal accuracy. When the data is generated from Gaussian mixtures or a multinomial logistic model, this condition holds under high enough effective overparameterization. We also show that this sufficient condition is satisfied under "neural collapse", a phenomenon that is observed in training deep neural networks. Second, we derive novel bounds on the accuracy of the MNI classifier, thereby showing that all three training algorithms lead to benign overfitting under sufficient overparameterization. Ultimately, our analysis shows that good generalization is possible for SVM solutions beyond the realm in which typical margin-based bounds apply.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.