亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The extensive-form game has been studied considerably in recent years. It can represent games with multiple decision points and incomplete information, and hence it is helpful in formulating games with uncertain inputs, such as poker. We consider an extended-form game with two players and zero-sum, i.e., the sum of their payoffs is always zero. In such games, the problem of finding the optimal strategy can be formulated as a bilinear saddle-point problem. This formulation grows huge depending on the size of the game, since it has variables representing the strategies at all decision points for each player. To solve such large-scale bilinear saddle-point problems, the excessive gap technique (EGT), a smoothing method, has been studied. This method generates a sequence of approximate solutions whose error is guaranteed to converge at $\mathcal{O}(1/k)$, where $k$ is the number of iterations. However, it has the disadvantage of having poor theoretical bounds on the error related to the game size. This makes it inapplicable to large games. Our goal is to improve the smoothing method for solving extensive-form games so that it can be applied to large-scale games. To this end, we make two contributions in this work. First, we slightly modify the strongly convex function used in the smoothing method in order to improve the theoretical bounds related to the game size. Second, we propose a heuristic called centering trick, which allows the smoothing method to be combined with other methods and consequently accelerates the convergence in practice. As a result, we combine EGT with CFR+, a state-of-the-art method for extensive-form games, to achieve good performance in games where conventional smoothing methods do not perform well. The proposed smoothing method is shown to have the potential to solve large games in practice.

相關內容

Overparameterized models may have many interpolating solutions; implicit regularization refers to the hidden preference of a particular optimization method towards a certain interpolating solution among the many. A by now established line of work has shown that (stochastic) gradient descent tends to have an implicit bias towards low rank and/or sparse solutions when used to train deep linear networks, explaining to some extent why overparameterized neural network models trained by gradient descent tend to have good generalization performance in practice. However, existing theory for square-loss objectives often requires very small initialization of the trainable weights, which is at odds with the larger scale at which weights are initialized in practice for faster convergence and better generalization performance. In this paper, we aim to close this gap by incorporating and analyzing gradient descent with weight normalization, where the weight vector is reparamterized in terms of polar coordinates, and gradient descent is applied to the polar coordinates. By analyzing key invariants of the gradient flow and using Lojasiewicz's Theorem, we show that weight normalization also has an implicit bias towards sparse solutions in the diagonal linear model, but that in contrast to plain gradient descent, weight normalization enables a robust bias that persists even if the weights are initialized at practically large scale. Experiments suggest that the gains in both convergence speed and robustness of the implicit bias are improved dramatically by using weight normalization in overparameterized diagonal linear network models.

A random algebraic graph is defined by a group $G$ with a uniform distribution over it and a connection $\sigma:G\longrightarrow[0,1]$ with expectation $p,$ satisfying $\sigma(g)=\sigma(g^{-1}).$ The random graph $\mathsf{RAG}(n,G,p,\sigma)$ with vertex set $[n]$ is formed as follows. First, $n$ independent vectors $x_1,\ldots,x_n$ are sampled uniformly from $G.$ Then, vertices $i,j$ are connected with probability $\sigma(x_ix_j^{-1}).$ This model captures random geometric graphs over the sphere and the hypercube, certain regimes of the stochastic block model, and random subgraphs of Cayley graphs. The main question of interest to the current paper is: when is a random algebraic graph statistically and/or computationally distinguishable from $\mathsf{G}(n,p)$? Our results fall into two categories. 1) Geometric. We focus on the case $G =\{\pm1\}^d$ and use Fourier-analytic tools. For hard threshold connections, we match [LMSY22b] for $p = \omega(1/n)$ and for $1/(r\sqrt{d})$-Lipschitz connections we extend the results of [LR21b] when $d = \Omega(n\log n)$ to the non-monotone setting. We study other connections such as indicators of interval unions and low-degree polynomials. 2) Algebraic. We provide evidence for an exponential statistical-computational gap. Consider any finite group $G$ and let $A\subseteq G$ be a set of elements formed by including each set of the form $\{g, g^{-1}\}$ independently with probability $1/2.$ Let $\Gamma_n(G,A)$ be the distribution of random graphs formed by taking a uniformly random induced subgraph of size $n$ of the Cayley graph $\Gamma(G,A).$ Then, $\Gamma_n(G,A)$ and $\mathsf{G}(n,1/2)$ are statistically indistinguishable with high probability over $A$ if and only if $\log|G|\gtrsim n.$ However, low-degree polynomial tests fail to distinguish $\Gamma_n(G,A)$ and $\mathsf{G}(n,1/2)$ with high probability over $A$ when $\log |G|=\log^{\Omega(1)}n.$

The ParaOpt algorithm was recently introduced as a time-parallel solver for optimal-control problems with a terminal-cost objective, and convergence results have been presented for the linear diffusive case with implicit-Euler time integrators. We reformulate ParaOpt for tracking problems and provide generalized convergence analyses for both objectives. We focus on linear diffusive equations and prove convergence bounds that are generic in the time integrators used. For large problem dimensions, ParaOpt's performance depends crucially on having a good preconditioner to solve the arising linear systems. For the case where ParaOpt's cheap, coarse-grained propagator is linear, we introduce diagonalization-based preconditioners inspired by recent advances in the ParaDiag family of methods. These preconditioners not only lead to a weakly-scalable ParaOpt version, but are themselves invertible in parallel, making maximal use of available concurrency. They have proven convergence properties in the linear diffusive case that are generic in the time discretization used, similarly to our ParaOpt results. Numerical results confirm that the iteration count of the iterative solvers used for ParaOpt's linear systems becomes constant in the limit of an increasing processor count. The paper is accompanied by a sequential MATLAB implementation.

Random smoothing data augmentation is a unique form of regularization that can prevent overfitting by introducing noise to the input data, encouraging the model to learn more generalized features. Despite its success in various applications, there has been a lack of systematic study on the regularization ability of random smoothing. In this paper, we aim to bridge this gap by presenting a framework for random smoothing regularization that can adaptively and effectively learn a wide range of ground truth functions belonging to the classical Sobolev spaces. Specifically, we investigate two underlying function spaces: the Sobolev space of low intrinsic dimension, which includes the Sobolev space in $D$-dimensional Euclidean space or low-dimensional sub-manifolds as special cases, and the mixed smooth Sobolev space with a tensor structure. By using random smoothing regularization as novel convolution-based smoothing kernels, we can attain optimal convergence rates in these cases using a kernel gradient descent algorithm, either with early stopping or weight decay. It is noteworthy that our estimator can adapt to the structural assumptions of the underlying data and avoid the curse of dimensionality. This is achieved through various choices of injected noise distributions such as Gaussian, Laplace, or general polynomial noises, allowing for broad adaptation to the aforementioned structural assumptions of the underlying data. The convergence rate depends only on the effective dimension, which may be significantly smaller than the actual data dimension. We conduct numerical experiments on simulated data to validate our theoretical results.

We study the implicit bias of gradient flow on linear equivariant steerable networks in group-invariant binary classification. Our findings reveal that the parameterized predictor converges in direction to the unique group-invariant classifier with a maximum margin defined by the input group action. Under a unitary assumption on the input representation, we establish the equivalence between steerable networks and data augmentation. Furthermore, we demonstrate the improved margin and generalization bound of steerable networks over their non-invariant counterparts.

In Bayesian inference, the approximation of integrals of the form $\psi = \mathbb{E}_{F}{l(X)} = \int_{\chi} l(\mathbf{x}) d F(\mathbf{x})$ is a fundamental challenge. Such integrals are crucial for evidence estimation, which is important for various purposes, including model selection and numerical analysis. The existing strategies for evidence estimation are classified into four categories: deterministic approximation, density estimation, importance sampling, and vertical representation (Llorente et al., 2020). In this paper, we show that the Riemann sum estimator due to Yakowitz (1978) can be used in the context of nested sampling (Skilling, 2006) to achieve a $O(n^{-4})$ rate of convergence, faster than the usual Ergodic Central Limit Theorem. We provide a brief overview of the literature on the Riemann sum estimators and the nested sampling algorithm and its connections to vertical likelihood Monte Carlo. We provide theoretical and numerical arguments to show how merging these two ideas may result in improved and more robust estimators for evidence estimation, especially in higher dimensional spaces. We also briefly discuss the idea of simulating the Lorenz curve that avoids the problem of intractable $\Lambda$ functions, essential for the vertical representation and nested sampling.

We study the computational scalability of a Gaussian process (GP) framework for solving general nonlinear partial differential equations (PDEs). This framework transforms solving PDEs to solving quadratic optimization problem with nonlinear constraints. Its complexity bottleneck lies in computing with dense kernel matrices obtained from pointwise evaluations of the covariance kernel of the GP and its partial derivatives at collocation points. We present a sparse Cholesky factorization algorithm for such kernel matrices based on the near-sparsity of the Cholesky factor under a new ordering of Diracs and derivative measurements. We rigorously identify the sparsity pattern and quantify the exponentially convergent accuracy of the corresponding Vecchia approximation of the GP, which is optimal in the Kullback-Leibler divergence. This enables us to compute $\epsilon$-approximate inverse Cholesky factors of the kernel matrices with complexity $O(N\log^d(N/\epsilon))$ in space and $O(N\log^{2d}(N/\epsilon))$ in time. With the sparse factors, gradient-based optimization methods become scalable. Furthermore, we can use the oftentimes more efficient Gauss-Newton method, for which we apply the conjugate gradient algorithm with the sparse factor of a reduced kernel matrix as a preconditioner to solve the linear system. We numerically illustrate our algorithm's near-linear space/time complexity for a broad class of nonlinear PDEs such as the nonlinear elliptic, Burgers, and Monge-Amp\`ere equations. In summary, we provide a fast, scalable, and accurate method for solving general PDEs with GPs.

Over the past several years, new machine learning accelerators were being announced and released every month for a variety of applications from speech recognition, video object detection, assisted driving, and many data center applications. This paper updates the survey of AI accelerators and processors from past two years. This paper collects and summarizes the current commercial accelerators that have been publicly announced with peak performance and power consumption numbers. The performance and power values are plotted on a scatter graph, and a number of dimensions and observations from the trends on this plot are again discussed and analyzed. This year, we also compile a list of benchmarking performance results and compute the computational efficiency with respect to peak performance.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司