亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A random algebraic graph is defined by a group $G$ with a uniform distribution over it and a connection $\sigma:G\longrightarrow[0,1]$ with expectation $p,$ satisfying $\sigma(g)=\sigma(g^{-1}).$ The random graph $\mathsf{RAG}(n,G,p,\sigma)$ with vertex set $[n]$ is formed as follows. First, $n$ independent vectors $x_1,\ldots,x_n$ are sampled uniformly from $G.$ Then, vertices $i,j$ are connected with probability $\sigma(x_ix_j^{-1}).$ This model captures random geometric graphs over the sphere and the hypercube, certain regimes of the stochastic block model, and random subgraphs of Cayley graphs. The main question of interest to the current paper is: when is a random algebraic graph statistically and/or computationally distinguishable from $\mathsf{G}(n,p)$? Our results fall into two categories. 1) Geometric. We focus on the case $G =\{\pm1\}^d$ and use Fourier-analytic tools. For hard threshold connections, we match [LMSY22b] for $p = \omega(1/n)$ and for $1/(r\sqrt{d})$-Lipschitz connections we extend the results of [LR21b] when $d = \Omega(n\log n)$ to the non-monotone setting. We study other connections such as indicators of interval unions and low-degree polynomials. 2) Algebraic. We provide evidence for an exponential statistical-computational gap. Consider any finite group $G$ and let $A\subseteq G$ be a set of elements formed by including each set of the form $\{g, g^{-1}\}$ independently with probability $1/2.$ Let $\Gamma_n(G,A)$ be the distribution of random graphs formed by taking a uniformly random induced subgraph of size $n$ of the Cayley graph $\Gamma(G,A).$ Then, $\Gamma_n(G,A)$ and $\mathsf{G}(n,1/2)$ are statistically indistinguishable with high probability over $A$ if and only if $\log|G|\gtrsim n.$ However, low-degree polynomial tests fail to distinguish $\Gamma_n(G,A)$ and $\mathsf{G}(n,1/2)$ with high probability over $A$ when $\log |G|=\log^{\Omega(1)}n.$

相關內容

Gaussianization is a simple generative model that can be trained without backpropagation. It has shown compelling performance on low dimensional data. As the dimension increases, however, it has been observed that the convergence speed slows down. We show analytically that the number of required layers scales linearly with the dimension for Gaussian input. We argue that this is because the model is unable to capture dependencies between dimensions. Empirically, we find the same linear increase in cost for arbitrary input $p(x)$, but observe favorable scaling for some distributions. We explore potential speed-ups and formulate challenges for further research.

We improve the Solovay-Kitaev theorem and algorithm for a general finite, inverse-closed generating set acting on a qudit. Prior versions of the algorithm can efficiently find a word of length $O((\log 1/\epsilon)^{3+\delta})$ to approximate an arbitrary target gate to within $\epsilon$. Using two new ideas, each of which reduces the exponent separately, our new bound on the world length is $O((\log 1/\epsilon)^{1.44042\ldots+\delta})$. Our result holds more generally for any finite set that densely generates any connected, semisimple real Lie group, with an extra length term in the non-compact case to reach group elements far away from the identity.

Within the next decade the Laser Interferometer Space Antenna (LISA) is due to be launched, providing the opportunity to extract physics from stellar objects and systems, such as \textit{Extreme Mass Ratio Inspirals}, (EMRIs) otherwise undetectable to ground based interferometers and Pulsar Timing Arrays (PTA). Unlike previous sources detected by the currently available observational methods, these sources can \textit{only} be simulated using an accurate computation of the gravitational self-force. Whereas the field has seen outstanding progress in the frequency domain, metric reconstruction and self-force calculations are still an open challenge in the time domain. Such computations would not only further corroborate frequency domain calculations and models, but also allow for full self-consistent evolution of the orbit under the effect of the self-force. Given we have \textit{a priori} information about the local structure of the discontinuity at the particle, we will show how to construct discontinuous spatial and temporal discretisations by operating on discontinuous Lagrange and Hermite interpolation formulae and hence recover higher order accuracy. In this work we demonstrate how this technique in conjunction with well-suited gauge choice (hyperboloidal slicing) and numerical (discontinuous collocation with time symmetric) methods can provide a relatively simple method of lines numerical algorithm to the problem. This is the first of a series of papers studying the behaviour of a point-particle prescribing circular geodesic motion in Schwarzschild in the \textit{time domain}. In this work we describe the numerical machinery necessary for these computations and show not only our work is capable of highly accurate flux radiation measurements but it also shows suitability for evaluation of the necessary field and it's derivatives at the particle limit.

State transformation problems such as compressing quantum information or breaking quantum commitments are fundamental quantum tasks. However, their computational difficulty cannot easily be characterized using traditional complexity theory, which focuses on tasks with classical inputs and outputs. To study the complexity of such state transformation tasks, we introduce a framework for unitary synthesis problems, including notions of reductions and unitary complexity classes. We use this framework to study the complexity of transforming one entangled state into another via local operations. We formalize this as the Uhlmann Transformation Problem, an algorithmic version of Uhlmann's theorem. Then, we prove structural results relating the complexity of the Uhlmann Transformation Problem, polynomial space quantum computation, and zero knowledge protocols. The Uhlmann Transformation Problem allows us to characterize the complexity of a variety of tasks in quantum information processing, including decoding noisy quantum channels, breaking falsifiable quantum cryptographic assumptions, implementing optimal prover strategies in quantum interactive proofs, and decoding the Hawking radiation of black holes. Our framework for unitary complexity thus provides new avenues for studying the computational complexity of many natural quantum information processing tasks.

Two new numerical schemes to approximate the Cahn-Hilliard equation with degenerate mobility (between stable values 0 and 1) are presented, by using two different non-centered approximation of the mobility. We prove that both schemes are energy stable and preserve the maximum principle approximately, i.e. the amount of the solution being outside of the interval [0,1] goes to zero in terms of a truncation parameter. Additionally, we present several numerical results in order to show the accuracy and the well behavior of the proposed schemes, comparing both schemes and the corresponding centered scheme.

We investigate how efficiently a well-studied family of domination-type problems can be solved on bounded-treewidth graphs. For sets $\sigma,\rho$ of non-negative integers, a $(\sigma,\rho)$-set of a graph $G$ is a set $S$ of vertices such that $|N(u)\cap S|\in \sigma$ for every $u\in S$, and $|N(v)\cap S|\in \rho$ for every $v\not\in S$. The problem of finding a $(\sigma,\rho)$-set (of a certain size) unifies standard problems such as Independent Set, Dominating Set, Independent Dominating Set, and many others. For all pairs of finite or cofinite sets $(\sigma,\rho)$, we determine (under standard complexity assumptions) the best possible value $c_{\sigma,\rho}$ such that there is an algorithm that counts $(\sigma,\rho)$-sets in time $c_{\sigma,\rho}^{\sf tw}\cdot n^{O(1)}$ (if a tree decomposition of width ${\sf tw}$ is given in the input). For example, for the Exact Independent Dominating Set problem (also known as Perfect Code) corresponding to $\sigma=\{0\}$ and $\rho=\{1\}$, we improve the $3^{\sf tw}\cdot n^{O(1)}$ algorithm of [van Rooij, 2020] to $2^{\sf tw}\cdot n^{O(1)}$. Despite the unusually delicate definition of $c_{\sigma,\rho}$, an accompanying paper shows that our algorithms are most likely optimal, that is, for any pair $(\sigma, \rho)$ of finite or cofinite sets where the problem is non-trivial, and any $\varepsilon>0$, a $(c_{\sigma,\rho}-\varepsilon)^{\sf tw}\cdot n^{O(1)}$-algorithm counting the number of $(\sigma,\rho)$-sets would violate the Counting Strong Exponential-Time Hypothesis (#SETH). For finite sets $\sigma$ and $\rho$, these lower bounds also extend to the decision version, and hence, our algorithms are optimal in this setting as well. In contrast, for many cofinite sets, we show that further significant improvements for the decision and optimization versions are possible using the technique of representative sets.

In this paper, we present new high-probability PAC-Bayes bounds for different types of losses. Firstly, for losses with a bounded range, we present a strengthened version of Catoni's bound that holds uniformly for all parameter values. This leads to new fast rate and mixed rate bounds that are interpretable and tighter than previous bounds in the literature. Secondly, for losses with more general tail behaviors, we introduce two new parameter-free bounds: a PAC-Bayes Chernoff analogue when the loss' cumulative generating function is bounded, and a bound when the loss' second moment is bounded. These two bounds are obtained using a new technique based on a discretization of the space of possible events for the "in probability" parameter optimization problem. Finally, we extend all previous results to anytime-valid bounds using a simple technique applicable to any existing bound.

We study extensions of Fr\'{e}chet means for random objects in the space ${\rm Sym}^+(p)$ of $p \times p$ symmetric positive-definite matrices using the scaling-rotation geometric framework introduced by Jung et al. [\textit{SIAM J. Matrix. Anal. Appl.} \textbf{36} (2015) 1180-1201]. The scaling-rotation framework is designed to enjoy a clearer interpretation of the changes in random ellipsoids in terms of scaling and rotation. In this work, we formally define the \emph{scaling-rotation (SR) mean set} to be the set of Fr\'{e}chet means in ${\rm Sym}^+(p)$ with respect to the scaling-rotation distance. Since computing such means requires a difficult optimization, we also define the \emph{partial scaling-rotation (PSR) mean set} lying on the space of eigen-decompositions as a proxy for the SR mean set. The PSR mean set is easier to compute and its projection to ${\rm Sym}^+(p)$ often coincides with SR mean set. Minimal conditions are required to ensure that the mean sets are non-empty. Because eigen-decompositions are never unique, neither are PSR means, but we give sufficient conditions for the sample PSR mean to be unique up to the action of a certain finite group. We also establish strong consistency of the sample PSR means as estimators of the population PSR mean set, and a central limit theorem. In an application to multivariate tensor-based morphometry, we demonstrate that a two-group test using the proposed PSR means can have greater power than the two-group test using the usual affine-invariant geometric framework for symmetric positive-definite matrices.

Understanding the effect of a feature vector $x \in \mathbb{R}^d$ on the response value (label) $y \in \mathbb{R}$ is the cornerstone of many statistical learning problems. Ideally, it is desired to understand how a set of collected features combine together and influence the response value, but this problem is notoriously difficult, due to the high-dimensionality of data and limited number of labeled data points, among many others. In this work, we take a new perspective on this problem, and we study the question of assessing the difference of influence that the two given features have on the response value. We first propose a notion of closeness for the influence of features, and show that our definition recovers the familiar notion of the magnitude of coefficients in the parametric model. We then propose a novel method to test for the closeness of influence in general model-free supervised learning problems. Our proposed test can be used with finite number of samples with control on type I error rate, no matter the ground truth conditional law $\mathcal{L}(Y |X)$. We analyze the power of our test for two general learning problems i) linear regression, and ii) binary classification under mixture of Gaussian models, and show that under the proper choice of score function, an internal component of our test, with sufficient number of samples will achieve full statistical power. We evaluate our findings through extensive numerical simulations, specifically we adopt the datamodel framework (Ilyas, et al., 2022) for CIFAR-10 dataset to identify pairs of training samples with different influence on the trained model via optional black box training mechanisms.

Partial differential equations (PDEs) are ubiquitous in science and engineering. Prior quantum algorithms for solving the system of linear algebraic equations obtained from discretizing a PDE have a computational complexity that scales at least linearly with the condition number $\kappa$ of the matrices involved in the computation. For many practical applications, $\kappa$ scales polynomially with the size $N$ of the matrices, rendering a polynomial-in-$N$ complexity for these algorithms. Here we present a quantum algorithm with a complexity that is polylogarithmic in $N$ but is independent of $\kappa$ for a large class of PDEs. Our algorithm generates a quantum state that enables extracting features of the solution. Central to our methodology is using a wavelet basis as an auxiliary system of coordinates in which the condition number of associated matrices is independent of $N$ by a simple diagonal preconditioner. We present numerical simulations showing the effect of the wavelet preconditioner for several differential equations. Our work could provide a practical way to boost the performance of quantum-simulation algorithms where standard methods are used for discretization.

北京阿比特科技有限公司