亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Our study presents a new framework that incorporates the Analytic Hierarchy Process (AHP) and Generative Pre-trained Transformer 4 (GPT-4) large language model (LLM), bringing novel approaches to cybersecurity Multiple-criteria Decision Making (MCDA). By utilizing the capabilities of GPT-4 autonomous agents as virtual experts, we automate the decision-making process, enhancing both efficiency and reliability. This new approach focuses on leveraging LLMs for sophisticated decision analysis, highlighting the synergy between traditional decision-making models and cutting-edge AI technologies. Our innovative methodology demonstrates significant advancements in using AI-driven agents for complex decision-making scenarios, highlighting the importance of AI in strategic cybersecurity applications. The findings reveal the transformative potential of combining AHP and LLMs, establishing a new paradigm for intelligent decision support systems in cybersecurity and beyond.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

In this study, we propose a methodology for the Emotional Mimicry Intensity (EMI) Estimation task within the context of the 6th Workshop and Competition on Affective Behavior Analysis in-the-wild. Our approach leverages the Wav2Vec 2.0 framework, pre-trained on a comprehensive podcast dataset, to extract a broad range of audio features encompassing both linguistic and paralinguistic elements. We enhance feature representation through a fusion technique that integrates individual features with a global mean vector, introducing global contextual insights into our analysis. Additionally, we incorporate a pre-trained valence-arousal-dominance (VAD) module from the Wav2Vec 2.0 model. Our fusion employs a Long Short-Term Memory (LSTM) architecture for efficient temporal analysis of audio data. Utilizing only the provided audio data, our approach demonstrates significant improvements over the established baseline.

Traditional pruning methods are known to be challenging to work in Large Language Models (LLMs) for Generative AI because of their unaffordable training process and large computational demands. For the first time, we introduce the information entropy of hidden state features into a pruning metric design, namely E-Sparse, to improve the accuracy of N:M sparsity on LLM. E-Sparse employs the information richness to leverage the channel importance, and further incorporates several novel techniques to put it into effect: (1) it introduces information entropy to enhance the significance of parameter weights and input feature norms as a novel pruning metric, and performs N:M sparsity without modifying the remaining weights. (2) it designs global naive shuffle and local block shuffle to quickly optimize the information distribution and adequately cope with the impact of N:M sparsity on LLMs' accuracy. E-Sparse is implemented as a Sparse-GEMM on FasterTransformer and runs on NVIDIA Ampere GPUs. Extensive experiments on the LLaMA family and OPT models show that E-Sparse can significantly speed up the model inference over the dense model (up to 1.53X) and obtain significant memory saving (up to 43.52%), with acceptable accuracy loss.

In this study, we propose a methodology for the Emotional Mimicry Intensity (EMI) Estimation task within the context of the 6th Workshop and Competition on Affective Behavior Analysis in-the-wild. Our approach leverages the Wav2Vec 2.0 framework, pre-trained on a comprehensive podcast dataset, to extract a broad range of audio features encompassing both linguistic and paralinguistic elements. We enhance feature representation through a fusion technique that integrates individual features with a global mean vector, introducing global contextual insights into our analysis. Additionally, we incorporate a pre-trained valence-arousal-dominance (VAD) module from the Wav2Vec 2.0 model. Our fusion employs a Long Short-Term Memory (LSTM) architecture for efficient temporal analysis of audio data. Utilizing only the provided audio data, our approach demonstrates significant improvements over the established baseline.

End-to-End Neural Diarization with Encoder-Decoder based Attractor (EEND-EDA) is an end-to-end neural model for automatic speaker segmentation and labeling. It achieves the capability to handle flexible number of speakers by estimating the number of attractors. EEND-EDA, however, struggles to accurately capture local speaker dynamics. This work proposes an auxiliary loss that aims to guide the Transformer encoders at the lower layer of EEND-EDA model to enhance the effect of self-attention modules using speaker activity information. The results evaluated on public dataset Mini LibriSpeech, demonstrates the effectiveness of the work, reducing Diarization Error Rate from 30.95% to 28.17%. We will release the source code on GitHub to allow further research and reproducibility.

Exploring alternative ideas by rewriting text is integral to the writing process. State-of-the-art Large Language Models (LLMs) can simplify writing variation generation. However, current interfaces pose challenges for simultaneous consideration of multiple variations: creating new variations without overwriting text can be difficult, and pasting them sequentially can clutter documents, increasing workload and disrupting writers' flow. To tackle this, we present ABScribe, an interface that supports rapid, yet visually structured, exploration and organization of writing variations in human-AI co-writing tasks. With ABScribe, users can swiftly modify variations using LLM prompts, which are auto-converted into reusable buttons. Variations are stored adjacently within text fields for rapid in-place comparisons using mouse-over interactions on a popup toolbar. Our user study with 12 writers shows that ABScribe significantly reduces task workload (d = 1.20, p < 0.001), enhances user perceptions of the revision process (d = 2.41, p < 0.001) compared to a popular baseline workflow, and provides insights into how writers explore variations using LLMs.

In addressing the challenge of analysing the large-scale Adolescent Brain Cognition Development (ABCD) fMRI dataset, involving over 5,000 subjects and extensive neuroimaging data, we propose a scalable Bayesian scalar-on-image regression model for computational feasibility and efficiency. Our model employs a relaxed-thresholded Gaussian process (RTGP), integrating piecewise-smooth, sparse, and continuous functions capable of both hard- and soft-thresholding. This approach introduces additional flexibility in feature selection in scalar-on-image regression and leads to scalable posterior computation by adopting a variational approximation and utilising the Karhunen-Lo\`eve expansion for Gaussian processes. This advancement substantially reduces the computational costs in vertex-wise analysis of cortical surface data in large-scale Bayesian spatial models. The model's parameter estimation and prediction accuracy and feature selection performance are validated through extensive simulation studies and an application to the ABCD study. Here, we perform regression analysis correlating intelligence scores with task-based functional MRI data, taking into account confounding factors including age, sex, and parental education level. This validation highlights our model's capability to handle large-scale neuroimaging data while maintaining computational feasibility and accuracy.

This study introduces a refined Flooding Injection Rate-adjustable Denial-of-Service (DoS) model for Network-on-Chips (NoCs) and more importantly presents DL2Fence, a novel framework utilizing Deep Learning (DL) and Frame Fusion (2F) for DoS detection and localization. Two Convolutional Neural Networks models for classification and segmentation were developed to detect and localize DoS respectively. It achieves detection and localization accuracies of 95.8\% and 91.7\%, and precision rates of 98.5\% and 99.3\% in a 16x16 mesh NoC. The framework's hardware overhead notably decreases by 76.3\% when scaling from 8x8 to 16x16 NoCs, and it requires 42.4\% less hardware compared to state-of-the-arts. This advancement demonstrates DL2Fence's effectiveness in balancing outstanding detection performance in large-scale NoCs with extremely low hardware overhead.

The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.

We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司