Algorithmic fairness is an increasingly important field concerned with detecting and mitigating biases in machine learning models. There has been a wealth of literature for algorithmic fairness in regression and classification however there has been little exploration of the field for survival analysis. Survival analysis is the prediction task in which one attempts to predict the probability of an event occurring over time. Survival predictions are particularly important in sensitive settings such as when utilising machine learning for diagnosis and prognosis of patients. In this paper we explore how to utilise existing survival metrics to measure bias with group fairness metrics. We explore this in an empirical experiment with 29 survival datasets and 8 measures. We find that measures of discrimination are able to capture bias well whereas there is less clarity with measures of calibration and scoring rules. We suggest further areas for research including prediction-based fairness metrics for distribution predictions.
Machine Learning (ML) algorithms based on gradient boosted decision trees (GBDT) are still favored on many tabular data tasks across various mission critical applications, from healthcare to finance. However, GBDT algorithms are not free of the risk of bias and discriminatory decision-making. Despite GBDT's popularity and the rapid pace of research in fair ML, existing in-processing fair ML methods are either inapplicable to GBDT, incur in significant train time overhead, or are inadequate for problems with high class imbalance. We present FairGBM, a learning framework for training GBDT under fairness constraints with little to no impact on predictive performance when compared to unconstrained LightGBM. Since common fairness metrics are non-differentiable, we employ a "proxy-Lagrangian" formulation using smooth convex error rate proxies to enable gradient-based optimization. Additionally, our open-source implementation shows an order of magnitude speedup in training time when compared with related work, a pivotal aspect to foster the widespread adoption of FairGBM by real-world practitioners.
In this paper, we study performance and fairness on visual and thermal images and expand the assessment to masked synthetic images. Using the SpeakingFace and Thermal-Mask dataset, we propose a process to assess fairness on real images and show how the same process can be applied to synthetic images. The resulting process shows a demographic parity difference of 1.59 for random guessing and increases to 5.0 when the recognition performance increases to a precision and recall rate of 99.99\%. We indicate that inherently biased datasets can deeply impact the fairness of any biometric system. A primary cause of a biased dataset is the class imbalance due to the data collection process. To address imbalanced datasets, the classes with fewer samples can be augmented with synthetic images to generate a more balanced dataset resulting in less bias when training a machine learning system. For biometric-enabled systems, fairness is of critical importance, while the related concept of Equity, Diversity, and Inclusion (EDI) is well suited for the generalization of fairness in biometrics, in this paper, we focus on the 3 most common demographic groups age, gender, and ethnicity.
Fairness testing aims at mitigating unintended discrimination in the decision-making process of data-driven AI systems. Individual discrimination may occur when an AI model makes different decisions for two distinct individuals who are distinguishable solely according to protected attributes, such as age and race. Such instances reveal biased AI behaviour, and are called Individual Discriminatory Instances (IDIs). In this paper, we propose an approach for the selection of the initial seeds to generate IDIs for fairness testing. Previous studies mainly used random initial seeds to this end. However this phase is crucial, as these seeds are the basis of the follow-up IDIs generation. We dubbed our proposed seed selection approach I&D. It generates a large number of initial IDIs exhibiting a great diversity, aiming at improving the overall performance of fairness testing. Our empirical study reveal that I&D is able to produce a larger number of IDIs with respect to four state-of-the-art seed generation approaches, generating 1.68X more IDIs on average. Moreover, we compare the use of I&D to train machine learning models and find that using I&D reduces the number of remaining IDIs by 29% when compared to the state-of-the-art, thus indicating that I&D is effective for improving model fairness
Modern biomedical studies often collect multi-view data, that is, multiple types of data measured on the same set of objects. A popular model in high-dimensional multi-view data analysis is to decompose each view's data matrix into a low-rank common-source matrix generated by latent factors common across all data views, a low-rank distinctive-source matrix corresponding to each view, and an additive noise matrix. We propose a novel decomposition method for this model, called decomposition-based generalized canonical correlation analysis (D-GCCA). The D-GCCA rigorously defines the decomposition on the L2 space of random variables in contrast to the Euclidean dot product space used by most existing methods, thereby being able to provide the estimation consistency for the low-rank matrix recovery. Moreover, to well calibrate common latent factors, we impose a desirable orthogonality constraint on distinctive latent factors. Existing methods, however, inadequately consider such orthogonality and may thus suffer from substantial loss of undetected common-source variation. Our D-GCCA takes one step further than generalized canonical correlation analysis by separating common and distinctive components among canonical variables, while enjoying an appealing interpretation from the perspective of principal component analysis. Furthermore, we propose to use the variable-level proportion of signal variance explained by common or distinctive latent factors for selecting the variables most influenced. Consistent estimators of our D-GCCA method are established with good finite-sample numerical performance, and have closed-form expressions leading to efficient computation especially for large-scale data. The superiority of D-GCCA over state-of-the-art methods is also corroborated in simulations and real-world data examples.
Interval-censored multi-state data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We formulate the effects of potentially time-dependent covariates on multi-state processes through semiparametric proportional intensity models with random effects. We adopt nonparametric maximum likelihood estimation (NPMLE) under general interval censoring and develop a stable expectation-maximization (EM) algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study.
Traditional nonparametric estimation methods often lead to a slow convergence rate in large dimensions and require unrealistically enormous sizes of datasets for reliable conclusions. We develop an approach based on mixed gradients, either observed or estimated, to effectively estimate the function at near-parametric convergence rates. The novel approach and computational algorithm could lead to methods useful to practitioners in many areas of science and engineering. Our theoretical results reveal a behavior universal to this class of nonparametric estimation problems. We explore a general setting involving tensor product spaces and build upon the smoothing spline analysis of variance (SS-ANOVA) framework. For $d$-dimensional models under full interaction, the optimal rates with gradient information on $p$ covariates are identical to those for the $(d-p)$-interaction models without gradients and, therefore, the models are immune to the "curse of interaction". For additive models, the optimal rates using gradient information are root-$n$, thus achieving the "parametric rate". We demonstrate aspects of the theoretical results through synthetic and real data applications.
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. Particularly in automatic biomedical image analysis, chosen performance metrics often do not reflect the domain interest, thus failing to adequately measure scientific progress and hindering translation of ML techniques into practice. To overcome this, a large international expert consortium created Metrics Reloaded, a comprehensive framework guiding researchers towards choosing metrics in a problem-aware manner. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. The framework was developed in a multi-stage Delphi process and is based on the novel concept of a problem fingerprint - a structured representation of the given problem that captures all aspects that are relevant for metric selection from the domain interest to the properties of the target structure(s), data set and algorithm output. Metrics Reloaded targets image analysis problems that can be interpreted as a classification task at image, object or pixel level, namely image-level classification, object detection, semantic segmentation, and instance segmentation tasks. Users are guided through the process of selecting and applying appropriate validation metrics while being made aware of potential pitfalls. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool, which also provides a common point of access to explore weaknesses and strengths of the most common validation metrics. An instantiation of the framework for various biological and medical image analysis use cases demonstrates its broad applicability across domains.
Given a discriminating neural network, the problem of fairness improvement is to systematically reduce discrimination without significantly scarifies its performance (i.e., accuracy). Multiple categories of fairness improving methods have been proposed for neural networks, including pre-processing, in-processing and post-processing. Our empirical study however shows that these methods are not always effective (e.g., they may improve fairness by paying the price of huge accuracy drop) or even not helpful (e.g., they may even worsen both fairness and accuracy). In this work, we propose an approach which adaptively chooses the fairness improving method based on causality analysis. That is, we choose the method based on how the neurons and attributes responsible for unfairness are distributed among the input attributes and the hidden neurons. Our experimental evaluation shows that our approach is effective (i.e., always identify the best fairness improving method) and efficient (i.e., with an average time overhead of 5 minutes).
As machine learning becomes prevalent, mitigating any unfairness present in the training data becomes critical. Among the various notions of fairness, this paper focuses on the well-known individual fairness, which states that similar individuals should be treated similarly. While individual fairness can be improved when training a model (in-processing), we contend that fixing the data before model training (pre-processing) is a more fundamental solution. In particular, we show that label flipping is an effective pre-processing technique for improving individual fairness. Our system iFlipper solves the optimization problem of minimally flipping labels given a limit to the individual fairness violations, where a violation occurs when two similar examples in the training data have different labels. We first prove that the problem is NP-hard. We then propose an approximate linear programming algorithm and provide theoretical guarantees on how close its result is to the optimal solution in terms of the number of label flips. We also propose techniques for making the linear programming solution more optimal without exceeding the violations limit. Experiments on real datasets show that iFlipper significantly outperforms other pre-processing baselines in terms of individual fairness and accuracy on unseen test sets. In addition, iFlipper can be combined with in-processing techniques for even better results.
Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/