As machine learning becomes prevalent, mitigating any unfairness present in the training data becomes critical. Among the various notions of fairness, this paper focuses on the well-known individual fairness, which states that similar individuals should be treated similarly. While individual fairness can be improved when training a model (in-processing), we contend that fixing the data before model training (pre-processing) is a more fundamental solution. In particular, we show that label flipping is an effective pre-processing technique for improving individual fairness. Our system iFlipper solves the optimization problem of minimally flipping labels given a limit to the individual fairness violations, where a violation occurs when two similar examples in the training data have different labels. We first prove that the problem is NP-hard. We then propose an approximate linear programming algorithm and provide theoretical guarantees on how close its result is to the optimal solution in terms of the number of label flips. We also propose techniques for making the linear programming solution more optimal without exceeding the violations limit. Experiments on real datasets show that iFlipper significantly outperforms other pre-processing baselines in terms of individual fairness and accuracy on unseen test sets. In addition, iFlipper can be combined with in-processing techniques for even better results.
Estimates of individual treatment effects from networked observational data are attracting increasing attention these days. One major challenge in network scenarios is the violation of the stable unit treatment value assumption (SUTVA), which assumes that the treatment assignment of a unit does not influence others' outcomes. In network data, due to interference, the outcome of a unit is influenced not only by its treatment (i.e., direct effects) but also by others' treatments (i.e., spillover effects). Furthermore, the influences from other units are always heterogeneous (e.g., friends with similar interests affect a person differently than friends with different interests). In this paper, we focus on the problem of estimating individual treatment effects (both direct and spillover effects) under heterogeneous interference. To address this issue, we propose a novel Dual Weighting Regression (DWR) algorithm by simultaneously learning attention weights that capture the heterogeneous interference and sample weights to eliminate the complex confounding bias in networks. We formulate the entire learning process as a bi-level optimization problem. In theory, we present generalization error bounds for individual treatment effect estimation. Extensive experiments on four benchmark datasets demonstrate that the proposed DWR algorithm outperforms state-of-the-art methods for estimating individual treatment effects under heterogeneous interference.
The requirements of modern production systems together with more advanced robotic technologies have fostered the integration of teams comprising humans and autonomous robots. However, along with the potential benefits also comes the question of how to effectively handle these teams considering the different characteristics of the involved agents. For this reason, this paper presents a framework for task allocation in a human multi-robot collaborative scenario. The proposed solution combines an optimal offline allocation with an online reallocation strategy which accounts for inaccuracies of the offline plan and/or unforeseen events, human subjective preferences and cost of switching from one task to another so as to increase human satisfaction and team efficiency. Experiments are presented for the case of two manipulators cooperating with a human operator for performing a box filling task.
Videos shot by laymen using hand-held cameras contain undesirable shaky motion. Estimating the global motion between successive frames, in a manner not influenced by moving objects, is central to many video stabilization techniques, but poses significant challenges. A large body of work uses 2D affine transformations or homography for the global motion. However, in this work, we introduce a more general representation scheme, which adapts any existing optical flow network to ignore the moving objects and obtain a spatially smooth approximation of the global motion between video frames. We achieve this by a knowledge distillation approach, where we first introduce a low pass filter module into the optical flow network to constrain the predicted optical flow to be spatially smooth. This becomes our student network, named as \textsc{GlobalFlowNet}. Then, using the original optical flow network as the teacher network, we train the student network using a robust loss function. Given a trained \textsc{GlobalFlowNet}, we stabilize videos using a two stage process. In the first stage, we correct the instability in affine parameters using a quadratic programming approach constrained by a user-specified cropping limit to control loss of field of view. In the second stage, we stabilize the video further by smoothing global motion parameters, expressed using a small number of discrete cosine transform coefficients. In extensive experiments on a variety of different videos, our technique outperforms state of the art techniques in terms of subjective quality and different quantitative measures of video stability. The source code is publicly available at \href{//github.com/GlobalFlowNet/GlobalFlowNet}{//github.com/GlobalFlowNet/GlobalFlowNet}
Despite recent explosion of interests in in-context learning, the underlying mechanism and the precise impact of the quality of demonstrations remain elusive. Intuitively, ground-truth labels should have as much impact in in-context learning (ICL) as supervised learning, but recent work reported that the input-label correspondence is significantly less important than previously thought. Intrigued by this counter-intuitive observation, we re-examine the importance of ground-truth labels in in-context learning. With the introduction of two novel metrics, namely Label-Correctness Sensitivity and Ground-truth Label Effect Ratio (GLER), we were able to conduct quantifiable analysis on the impact of ground-truth label demonstrations. Through extensive analyses, we find that the correct input-label mappings can have varying impacts on the downstream in-context learning performances, depending on the experimental configuration. Through additional studies, we identify key components, such as the verbosity of prompt templates and the language model size, as the controlling factor to achieve more noise-resilient ICL.
Machine learning models built on datasets containing discriminative instances attributed to various underlying factors result in biased and unfair outcomes. It's a well founded and intuitive fact that existing bias mitigation strategies often sacrifice accuracy in order to ensure fairness. But when AI engine's prediction is used for decision making which reflects on revenue or operational efficiency such as credit risk modelling, it would be desirable by the business if accuracy can be somehow reasonably preserved. This conflicting requirement of maintaining accuracy and fairness in AI motivates our research. In this paper, we propose a fresh approach for simultaneous improvement of fairness and accuracy of ML models within a realistic paradigm. The essence of our work is a data preprocessing technique that can detect instances ascribing a specific kind of bias that should be removed from the dataset before training and we further show that such instance removal will have no adverse impact on model accuracy. In particular, we claim that in the problem settings where instances exist with similar feature but different labels caused by variation in protected attributes , an inherent bias gets induced in the dataset, which can be identified and mitigated through our novel scheme. Our experimental evaluation on two open-source datasets demonstrates how the proposed method can mitigate bias along with improving rather than degrading accuracy, while offering certain set of control for end user.
We study a variant of classical clustering formulations in the context of algorithmic fairness, known as diversity-aware clustering. In this variant we are given a collection of facility subsets, and a solution must contain at least a specified number of facilities from each subset while simultaneously minimizing the clustering objective ($k$-median or $k$-means). We investigate the fixed-parameter tractability of these problems and show several negative hardness and inapproximability results, even when we afford exponential running time with respect to some parameters. Motivated by these results we identify natural parameters of the problem, and present fixed-parameter approximation algorithms with approximation ratios $\big(1 + \frac{2}{e} +\epsilon \big)$ and $\big(1 + \frac{8}{e}+ \epsilon \big)$ for diversity-aware $k$-median and diversity-aware $k$-means respectively, and argue that these ratios are essentially tight assuming the gap-exponential time hypothesis. We also present a simple and more practical bicriteria approximation algorithm with better running time bounds. We finally propose efficient and practical heuristics. We evaluate the scalability and effectiveness of our methods in a wide variety of rigorously conducted experiments, on both real and synthetic data.
Long-term fairness is an important factor of consideration in designing and deploying learning-based decision systems in high-stake decision-making contexts. Recent work has proposed the use of Markov Decision Processes (MDPs) to formulate decision-making with long-term fairness requirements in dynamically changing environments, and demonstrated major challenges in directly deploying heuristic and rule-based policies that worked well in static environments. We show that policy optimization methods from deep reinforcement learning can be used to find strictly better decision policies that can often achieve both higher overall utility and less violation of the fairness requirements, compared to previously-known strategies. In particular, we propose new methods for imposing fairness requirements in policy optimization by regularizing the advantage evaluation of different actions. Our proposed methods make it easy to impose fairness constraints without reward engineering or sacrificing training efficiency. We perform detailed analyses in three established case studies, including attention allocation in incident monitoring, bank loan approval, and vaccine distribution in population networks.
Solving inverse problems is a fundamental component of science, engineering and mathematics. With the advent of deep learning, deep neural networks have significant potential to outperform existing state-of-the-art, model-based methods for solving inverse problems. However, it is known that current data-driven approaches face several key issues, notably hallucinations, instabilities and unpredictable generalization, with potential impact in critical tasks such as medical imaging. This raises the key question of whether or not one can construct deep neural networks for inverse problems with explicit stability and accuracy guarantees. In this work, we present a novel construction of accurate, stable and efficient neural networks for inverse problems with general analysis-sparse models, termed NESTANets. To construct the network, we first unroll NESTA, an accelerated first-order method for convex optimization. The slow convergence of this method leads to deep networks with low efficiency. Therefore, to obtain shallow, and consequently more efficient, networks we combine NESTA with a novel restart scheme. We then use compressed sensing techniques to demonstrate accuracy and stability. We showcase this approach in the case of Fourier imaging, and verify its stability and performance via a series of numerical experiments. The key impact of this work is demonstrating the construction of efficient neural networks based on unrolling with guaranteed stability and accuracy.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.