亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural operators (NOs) have emerged as effective tools for modeling complex physical systems in scientific machine learning. In NOs, a central characteristic is to learn the governing physical laws directly from data. In contrast to other machine learning applications, partial knowledge is often known a priori about the physical system at hand whereby quantities such as mass, energy and momentum are exactly conserved. Currently, NOs have to learn these conservation laws from data and can only approximately satisfy them due to finite training data and random noise. In this work, we introduce conservation law-encoded neural operators (clawNOs), a suite of NOs that endow inference with automatic satisfaction of such conservation laws. ClawNOs are built with a divergence-free prediction of the solution field, with which the continuity equation is automatically guaranteed. As a consequence, clawNOs are compliant with the most fundamental and ubiquitous conservation laws essential for correct physical consistency. As demonstrations, we consider a wide variety of scientific applications ranging from constitutive modeling of material deformation, incompressible fluid dynamics, to atmospheric simulation. ClawNOs significantly outperform the state-of-the-art NOs in learning efficacy, especially in small-data regimes.

相關內容

Large Language Models (LLMs) are deployed as powerful tools for several natural language processing (NLP) applications. Recent works show that modern LLMs can generate self-explanations (SEs), which elicit their intermediate reasoning steps for explaining their behavior. Self-explanations have seen widespread adoption owing to their conversational and plausible nature. However, there is little to no understanding of their faithfulness. In this work, we discuss the dichotomy between faithfulness and plausibility in SEs generated by LLMs. We argue that while LLMs are adept at generating plausible explanations -- seemingly logical and coherent to human users -- these explanations do not necessarily align with the reasoning processes of the LLMs, raising concerns about their faithfulness. We highlight that the current trend towards increasing the plausibility of explanations, primarily driven by the demand for user-friendly interfaces, may come at the cost of diminishing their faithfulness. We assert that the faithfulness of explanations is critical in LLMs employed for high-stakes decision-making. Moreover, we urge the community to identify the faithfulness requirements of real-world applications and ensure explanations meet those needs. Finally, we propose some directions for future work, emphasizing the need for novel methodologies and frameworks that can enhance the faithfulness of self-explanations without compromising their plausibility, essential for the transparent deployment of LLMs in diverse high-stakes domains.

The burgeoning fields of robot learning and embodied AI have triggered an increasing demand for large quantities of data. However, collecting sufficient unbiased data from the target domain remains a challenge due to costly data collection processes and stringent safety requirements. Consequently, researchers often resort to data from easily accessible source domains, such as simulation and laboratory environments, for cost-effective data acquisition and rapid model iteration. Nevertheless, the environments and embodiments of these source domains can be quite different from their target domain counterparts, underscoring the need for effective cross-domain policy transfer approaches. In this paper, we conduct a systematic review of existing cross-domain policy transfer methods. Through a nuanced categorization of domain gaps, we encapsulate the overarching insights and design considerations of each problem setting. We also provide a high-level discussion about the key methodologies used in cross-domain policy transfer problems. Lastly, we summarize the open challenges that lie beyond the capabilities of current paradigms and discuss potential future directions in this field.

Shapley values have emerged as a foundational tool in machine learning (ML) for elucidating model decision-making processes. Despite their widespread adoption and unique ability to satisfy essential explainability axioms, computational challenges persist in their estimation when ($i$) evaluating a model over all possible subset of input feature combinations, ($ii$) estimating model marginals, and ($iii$) addressing variability in explanations. We introduce a novel, self-explaining method that simplifies the computation of Shapley values significantly, requiring only a single forward pass. Recognizing the deterministic treatment of Shapley values as a limitation, we explore incorporating a probabilistic framework to capture the inherent uncertainty in explanations. Unlike alternatives, our technique does not rely directly on the observed data space to estimate marginals; instead, it uses adaptable baseline values derived from a latent, feature-specific embedding space, generated by a novel masked neural network architecture. Evaluations on simulated and real datasets underscore our technique's robust predictive and explanatory performance.

We consider the problem of designing sample efficient learning algorithms for infinite horizon discounted reward Markov Decision Process. Specifically, we propose the Accelerated Natural Policy Gradient (ANPG) algorithm that utilizes an accelerated stochastic gradient descent process to obtain the natural policy gradient. ANPG achieves $\mathcal{O}({\epsilon^{-2}})$ sample complexity and $\mathcal{O}(\epsilon^{-1})$ iteration complexity with general parameterization where $\epsilon$ defines the optimality error. This improves the state-of-the-art sample complexity by a $\log(\frac{1}{\epsilon})$ factor. ANPG is a first-order algorithm and unlike some existing literature, does not require the unverifiable assumption that the variance of importance sampling (IS) weights is upper bounded. In the class of Hessian-free and IS-free algorithms, ANPG beats the best-known sample complexity by a factor of $\mathcal{O}(\epsilon^{-\frac{1}{2}})$ and simultaneously matches their state-of-the-art iteration complexity.

Hugging Face (HF) has established itself as a crucial platform for the development and sharing of machine learning (ML) models. This repository mining study, which delves into more than 380,000 models using data gathered via the HF Hub API, aims to explore the community engagement, evolution, and maintenance around models hosted on HF, aspects that have yet to be comprehensively explored in the literature. We first examine the overall growth and popularity of HF, uncovering trends in ML domains, framework usage, authors grouping and the evolution of tags and datasets used. Through text analysis of model card descriptions, we also seek to identify prevalent themes and insights within the developer community. Our investigation further extends to the maintenance aspects of models, where we evaluate the maintenance status of ML models, classify commit messages into various categories (corrective, perfective, and adaptive), analyze the evolution across development stages of commits metrics and introduce a new classification system that estimates the maintenance status of models based on multiple attributes. This study aims to provide valuable insights about ML model maintenance and evolution that could inform future model development strategies on platforms like HF.

Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.

We propose a novel approach based on Denoising Diffusion Probabilistic Models (DDPMs) to control nonlinear dynamical systems. DDPMs are the state-of-art of generative models that have achieved success in a wide variety of sampling tasks. In our framework, we pose the feedback control problem as a generative task of drawing samples from a target set under control system constraints. The forward process of DDPMs constructs trajectories originating from a target set by adding noise. We learn to control a dynamical system in reverse such that the terminal state belongs to the target set. For control-affine systems without drift, we prove that the control system can exactly track the trajectory of the forward process in reverse, whenever the the Lie bracket based condition for controllability holds. We numerically study our approach on various nonlinear systems and verify our theoretical results. We also conduct numerical experiments for cases beyond our theoretical results on a physics-engine.

Runge-Kutta (RK) methods may exhibit order reduction when applied to stiff problems. For linear problems with time-independent operators, order reduction can be avoided if the method satisfies certain weak stage order (WSO) conditions, which are less restrictive than traditional stage order conditions. This paper outlines the first algebraic theory of WSO, and establishes general order barriers that relate the WSO of a RK scheme to its order and number of stages for both fully-implicit and DIRK schemes. It is shown in several scenarios that the constructed bounds are sharp. The theory characterizes WSO in terms of orthogonal invariant subspaces and associated minimal polynomials. The resulting necessary conditions on the structure of RK methods with WSO are then shown to be of practical use for the construction of such schemes.

Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

北京阿比特科技有限公司