亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Runge-Kutta (RK) methods may exhibit order reduction when applied to stiff problems. For linear problems with time-independent operators, order reduction can be avoided if the method satisfies certain weak stage order (WSO) conditions, which are less restrictive than traditional stage order conditions. This paper outlines the first algebraic theory of WSO, and establishes general order barriers that relate the WSO of a RK scheme to its order and number of stages for both fully-implicit and DIRK schemes. It is shown in several scenarios that the constructed bounds are sharp. The theory characterizes WSO in terms of orthogonal invariant subspaces and associated minimal polynomials. The resulting necessary conditions on the structure of RK methods with WSO are then shown to be of practical use for the construction of such schemes.

相關內容

Plug-and-Play Priors (PnP) is a well-known class of methods for solving inverse problems in computational imaging. PnP methods combine physical forward models with learned prior models specified as image denoisers. A common issue with the learned models is that of a performance drop when there is a distribution shift between the training and testing data. Test-time training (TTT) was recently proposed as a general strategy for improving the performance of learned models when training and testing data come from different distributions. In this paper, we propose PnP-TTT as a new method for overcoming distribution shifts in PnP. PnP-TTT uses deep equilibrium learning (DEQ) for optimizing a self-supervised loss at the fixed points of PnP iterations. PnP-TTT can be directly applied on a single test sample to improve the generalization of PnP. We show through simulations that given a sufficient number of measurements, PnP-TTT enables the use of image priors trained on natural images for image reconstruction in magnetic resonance imaging (MRI).

The recursive Neville algorithm allows one to calculate interpolating functions recursively. Upon a judicious choice of the abscissas used for the interpolation (and extrapolation), this algorithm leads to a method for convergence acceleration. For example, one can use the Neville algorithm in order to successively eliminate inverse powers of the upper limit of the summation from the partial sums of a given, slowly convergent input series. Here, we show that, for a particular choice of the abscissas used for the extrapolation, one can replace the recursive Neville scheme by a simple one-step transformation, while also obtaining access to subleading terms for the transformed series after convergence acceleration. The matrix-based, unified formulas allow one to estimate the rate of convergence of the partial sums of the input series to their limit. In particular, Bethe logarithms for hydrogen are calculated to 100 decimal digits.

Classification algorithms using Transformer architectures can be affected by the sequence length learning problem whenever observations from different classes have a different length distribution. This problem causes models to use sequence length as a predictive feature instead of relying on important textual information. Although most public datasets are not affected by this problem, privately owned corpora for fields such as medicine and insurance may carry this data bias. The exploitation of this sequence length feature poses challenges throughout the value chain as these machine learning models can be used in critical applications. In this paper, we empirically expose this problem and present approaches to minimize its impacts.

The commercialization of large language models (LLMs) has led to the common practice of high-level API-only access to proprietary models. In this work, we show that even with a conservative assumption about the model architecture, it is possible to learn a surprisingly large amount of non-public information about an API-protected LLM from a relatively small number of API queries (e.g., costing under $1,000 for OpenAI's gpt-3.5-turbo). Our findings are centered on one key observation: most modern LLMs suffer from a softmax bottleneck, which restricts the model outputs to a linear subspace of the full output space. We show that this lends itself to a model image or a model signature which unlocks several capabilities with affordable cost: efficiently discovering the LLM's hidden size, obtaining full-vocabulary outputs, detecting and disambiguating different model updates, identifying the source LLM given a single full LLM output, and even estimating the output layer parameters. Our empirical investigations show the effectiveness of our methods, which allow us to estimate the embedding size of OpenAI's gpt-3.5-turbo to be about 4,096. Lastly, we discuss ways that LLM providers can guard against these attacks, as well as how these capabilities can be viewed as a feature (rather than a bug) by allowing for greater transparency and accountability.

Object counting typically uses 2D point annotations. The complexity of object shapes and the subjectivity of annotators may lead to annotation inconsistency, potentially confusing counting model training. Some sophisticated noise-resistance counting methods have been proposed to alleviate this issue. Differently, we aim to directly refine the initial point annotations before training counting models. For that, we propose the Shifted Autoencoders (SAE), which enhances annotation consistency. Specifically, SAE applies random shifts to initial point annotations and employs a UNet to restore them to their original positions. Similar to MAE reconstruction, the trained SAE captures general position knowledge and ignores specific manual offset noise. This allows to restore the initial point annotations to more general and thus consistent positions. Extensive experiments show that using such refined consistent annotations to train some advanced (including noise-resistance) object counting models steadily/significantly boosts their performances. Remarkably, the proposed SAE helps to set new records on nine datasets. We will make codes and refined point annotations available.

The Skolem problem is a long-standing open problem in linear dynamical systems: can a linear recurrence sequence (LRS) ever reach 0 from a given initial configuration? Similarly, the positivity problem asks whether the LRS stays positive from an initial configuration. Deciding Skolem (or positivity) has been open for half a century: the best known decidability results are for LRS with special properties (e.g., low order recurrences). But these problems are easier for "uninitialized" variants, where the initial configuration is not fixed but can vary arbitrarily: checking if there is an initial configuration from which the LRS stays positive can be decided in polynomial time (Tiwari in 2004, Braverman in 2006). In this paper, we consider problems that lie between the initialized and uninitialized variants. More precisely, we ask if 0 (resp. negative numbers) can be avoided from every initial configuration in a neighborhood of a given initial configuration. This can be considered as a robust variant of the Skolem (resp. positivity) problem. We show that these problems lie at the frontier of decidability: if the neighbourhood is given as part of the input, then robust Skolem and robust positivity are Diophantine hard, i.e., solving either would entail major breakthroughs in Diophantine approximations, as happens for (non-robust) positivity. However, if one asks whether such a neighbourhood exists, then the problems turn out to be decidable with PSPACE complexity. Our techniques also allow us to tackle robustness for ultimate positivity, which asks whether there is a bound on the number of steps after which the LRS remains positive. There are two variants depending on whether we ask for a "uniform" bound on this number of steps. For the non-uniform variant, when the neighbourhood is open, the problem turns out to be tractable, even when the neighbourhood is given as input.

We study the computational complexity of counting constraint satisfaction problems (#CSPs) whose constraints assign complex numbers to Boolean inputs when the corresponding constraint hypergraphs are acyclic. These problems are called acyclic #CSPs or succinctly, #ACSPs. We wish to determine the computational complexity of all such #ACSPs when arbitrary unary constraints are freely available. Depending on whether we further allow or disallow the free use of the specific constraint XOR (binary disequality), we present two complexity classifications of the #ACSPs according to the types of constraints used for the problems. When XOR is freely available, we first obtain a complete dichotomy classification. On the contrary, when XOR is not available for free, we then obtain a trichotomy classification. To deal with an acyclic nature of constraints in those classifications, we develop a new technical tool called acyclic-T-constructibility or AT-constructibility, and we exploit it to analyze a complexity upper bound of each #ACSPs.

Training large deep learning models requires parallelization techniques to scale. In existing methods such as Data Parallelism or ZeRO-DP, micro-batches of data are processed in parallel, which creates two drawbacks: the total memory required to store the model's activations peaks at the end of the forward pass, and gradients must be simultaneously averaged at the end of the backpropagation step. We propose Cyclic Data Parallelism, a novel paradigm shifting the execution of the micro-batches from simultaneous to sequential, with a uniform delay. At the cost of a slight gradient delay, the total memory taken by activations is constant, and the gradient communications are balanced during the training step. With Model Parallelism, our technique reduces the number of GPUs needed, by sharing GPUs across micro-batches. Within the ZeRO-DP framework, our technique allows communication of the model states with point-to-point operations rather than a collective broadcast operation. We illustrate the strength of our approach on the CIFAR-10 and ImageNet datasets.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

北京阿比特科技有限公司