We show that the simplest local search heuristics for two natural Euclidean clustering problems are PLS-complete. First, we show that the Hartigan--Wong method for $k$-Means clustering is PLS-complete, even when $k = 2$. Second, we show the same result for the Flip heuristic for Max Cut, even when the edge weights are given by the (squared) Euclidean distances between the points in some set $\mathcal{X} \subseteq \mathbb{R}^d$; a problem which is equivalent to Min Sum 2-Clustering.
In machine learning and neural network optimization, algorithms like incremental gradient, and shuffle SGD are popular due to minimizing the number of cache misses and good practical convergence behavior. However, their optimization properties in theory, especially for non-convex smooth functions, remain incompletely explored. This paper delves into the convergence properties of SGD algorithms with arbitrary data ordering, within a broad framework for non-convex smooth functions. Our findings show enhanced convergence guarantees for incremental gradient and single shuffle SGD. Particularly if $n$ is the training set size, we improve $n$ times the optimization term of convergence guarantee to reach accuracy $\varepsilon$ from $O(n / \varepsilon)$ to $O(1 / \varepsilon)$.
In the midst of the rapid integration of artificial intelligence (AI) into real world applications, one pressing challenge we confront is the phenomenon of model drift, wherein the performance of AI models gradually degrades over time, compromising their effectiveness in real-world, dynamic environments. Once identified, we need techniques for handling this drift to preserve the model performance and prevent further degradation. This study investigates two prominent quality aware strategies to combat model drift: data quality assessment and data conditioning based on prior model knowledge. The former leverages image quality assessment metrics to meticulously select high-quality training data, improving the model robustness, while the latter makes use of learned feature vectors from existing models to guide the selection of future data, aligning it with the model's prior knowledge. Through comprehensive experimentation, this research aims to shed light on the efficacy of these approaches in enhancing the performance and reliability of semantic segmentation models, thereby contributing to the advancement of computer vision capabilities in real-world scenarios.
Despite the recent success associated with Large Language Models~(LLMs), they are notably cost-prohibitive to deploy in resource-constrained environments due to their excessive memory and computational demands. In addition to model parameters, the key-value cache is also stored in GPU memory, growing linearly with batch size and sequence length. As a remedy, recent works have proposed various eviction policies for maintaining the overhead of key-value cache under a given budget. This paper embarks on the efficacy of existing eviction policies in terms of \textit{importance score calculation} and \textit{eviction scope construction}. We identify the deficiency of prior policies in these two aspects and introduce RoCo, a \underline{r}\underline{o}bust \underline{c}ache \underline{o}mission policy based on temporal attention scores and robustness measures. Extensive experimentation spanning prefilling and auto-regressive decoding stages validates the superiority of RoCo. Finally, we release EasyKV, a versatile software package dedicated to user-friendly key-value constrained generative inference. Code available at \url{//github.com/DRSY/EasyKV}.
We analyze the capabilities of Transformer language models on learning discrete algorithms. To this end, we introduce two new tasks demanding the composition of several discrete sub-tasks. On both training LLaMA models from scratch and prompting on GPT-4 and Gemini we measure learning compositions of learned primitives. We observe that the compositional capabilities of state-of-the-art Transformer language models are very limited and sample-wise scale worse than relearning all sub-tasks for a new algorithmic composition. We also present a theorem in complexity theory, showing that gradient descent on memorizing feedforward models can be exponentially data inefficient.
Agency, the capacity to proactively shape events, is central to how humans interact and collaborate. While LLMs are being developed to simulate human behavior and serve as human-like agents, little attention has been given to the Agency that these models should possess in order to proactively manage the direction of interaction and collaboration. In this paper, we investigate Agency as a desirable function of LLMs, and how it can be measured and managed. We build on social-cognitive theory to develop a framework of features through which Agency is expressed in dialogue - indicating what you intend to do (Intentionality), motivating your intentions (Motivation), having self-belief in intentions (Self-Efficacy), and being able to self-adjust (Self-Regulation). We collect a new dataset of 83 human-human collaborative interior design conversations containing 908 conversational snippets annotated for Agency features. Using this dataset, we develop methods for measuring Agency of LLMs. Automatic and human evaluations show that models that manifest features associated with high Intentionality, Motivation, Self-Efficacy, and Self-Regulation are more likely to be perceived as strongly agentive.
In this research study, we empirically investigate the effect of sampling temperature on the performance of Large Language Models (LLMs) on various problem-solving tasks. We created a multiple-choice question-and-answer (MCQA) exam by randomly sampling problems from standard LLM benchmarks. Then, we used four popular LLMs with five prompt-engineering techniques to solve the MCQA problems while increasing the sampling temperature from 0.0 to 1.0. Despite anecdotal reports to the contrary, our empirical results indicate that changes in temperature in the range 0.0 to 1.0 do not have a statistically significant impact on LLM performance for problem-solving tasks. In addition, these results appear to hold regardless of the LLM, the prompt-engineering technique, or the problem domain. All code, data, and supplemental materials are available on GitHub at: //github.com/matthewrenze/jhu-llm-temperature.
Large Language Models (LLMs) have shown remarkable promise in their ability to interact proficiently with humans. Subsequently, their potential use as artificial confederates and surrogates in sociological experiments involving conversation is an exciting prospect. But how viable is this idea? This paper endeavors to test the limits of current-day LLMs with a pre-registered study integrating real people with LLM agents acting as people. The study focuses on debate-based opinion consensus formation in three environments: humans only, agents and humans, and agents only. Our goal is to understand how LLM agents influence humans, and how capable they are in debating like humans. We find that LLMs can blend in and facilitate human productivity but are less convincing in debate, with their behavior ultimately deviating from human's. We elucidate these primary failings and anticipate that LLMs must evolve further before being viable debaters.
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration.
Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.
To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.