Deep learning-based methods have significantly influenced the blind image quality assessment (BIQA) field, however, these methods often require training using large amounts of human rating data. In contrast, traditional knowledge-based methods are cost-effective for training but face challenges in effectively extracting features aligned with human visual perception. To bridge these gaps, we propose integrating deep features from pre-trained visual models with a statistical analysis model into a Multi-scale Deep Feature Statistics (MDFS) model for achieving opinion-unaware BIQA (OU-BIQA), thereby eliminating the reliance on human rating data and significantly improving training efficiency. Specifically, we extract patch-wise multi-scale features from pre-trained vision models, which are subsequently fitted into a multivariate Gaussian (MVG) model. The final quality score is determined by quantifying the distance between the MVG model derived from the test image and the benchmark MVG model derived from the high-quality image set. A comprehensive series of experiments conducted on various datasets show that our proposed model exhibits superior consistency with human visual perception compared to state-of-the-art BIQA models. Furthermore, it shows improved generalizability across diverse target-specific BIQA tasks. Our code is available at: //github.com/eezkni/MDFS
Backdoor attacks compromise the integrity and reliability of machine learning models by embedding a hidden trigger during the training process, which can later be activated to cause unintended misbehavior. We propose a novel backdoor mitigation approach via machine unlearning to counter such backdoor attacks. The proposed method utilizes model activation of domain-equivalent unseen data to guide the editing of the model's weights. Unlike the previous unlearning-based mitigation methods, ours is computationally inexpensive and achieves state-of-the-art performance while only requiring a handful of unseen samples for unlearning. In addition, we also point out that unlearning the backdoor may cause the whole targeted class to be unlearned, thus introducing an additional repair step to preserve the model's utility after editing the model. Experiment results show that the proposed method is effective in unlearning the backdoor on different datasets and trigger patterns.
Reinforcement learning (RL) for bipedal locomotion has recently demonstrated robust gaits over moderate terrains using only proprioceptive sensing. However, such blind controllers will fail in environments where robots must anticipate and adapt to local terrain, which requires visual perception. In this paper, we propose a fully-learned system that allows bipedal robots to react to local terrain while maintaining commanded travel speed and direction. Our approach first trains a controller in simulation using a heightmap expressed in the robot's local frame. Next, data is collected in simulation to train a heightmap predictor, whose input is the history of depth images and robot states. We demonstrate that with appropriate domain randomization, this approach allows for successful sim-to-real transfer with no explicit pose estimation and no fine-tuning using real-world data. To the best of our knowledge, this is the first example of sim-to-real learning for vision-based bipedal locomotion over challenging terrains.
Data augmentation is widely applied and has shown its benefits in different machine learning tasks. However, as recently observed in some downstream tasks, data augmentation may introduce an unfair impact on classifications. While it can improve the performance of some classes, it can actually be detrimental for other classes, which can be problematic in some application domains. In this paper, to counteract this phenomenon, we propose a FAir Classification approach with a Two-player game (FACT). We first formulate the training of a classifier with data augmentation as a fair optimization problem, which can be further written as an adversarial two-player game. Following this formulation, we propose a novel multiplicative weight optimization algorithm, for which we theoretically prove that it can converge to a solution that is fair over classes. Interestingly, our formulation also reveals that this fairness issue over classes is not due to data augmentation only, but is in fact a general phenomenon. Our empirical experiments demonstrate that the performance of our learned classifiers is indeed more fairly distributed over classes in five datasets, with only limited impact on the average accuracy.
Recently, diffusion models have increasingly demonstrated their capabilities in vision understanding. By leveraging prompt-based learning to construct sentences, these models have shown proficiency in classification and visual grounding tasks. However, existing approaches primarily showcase their ability to perform sentence-level localization, leaving the potential for leveraging contextual information for phrase-level understanding largely unexplored. In this paper, we utilize Panoptic Narrative Grounding (PNG) as a proxy task to investigate this capability further. PNG aims to segment object instances mentioned by multiple noun phrases within a given narrative text. Specifically, we introduce the DiffPNG framework, a straightforward yet effective approach that fully capitalizes on the diffusion's architecture for segmentation by decomposing the process into a sequence of localization, segmentation, and refinement steps. The framework initially identifies anchor points using cross-attention mechanisms and subsequently performs segmentation with self-attention to achieve zero-shot PNG. Moreover, we introduce a refinement module based on SAM to enhance the quality of the segmentation masks. Our extensive experiments on the PNG dataset demonstrate that DiffPNG achieves strong performance in the zero-shot PNG task setting, conclusively proving the diffusion model's capability for context-aware, phrase-level understanding. Source code is available at \url{//github.com/nini0919/DiffPNG}.
Self-supervised learning methods for medical images primarily rely on the imaging modality during pretraining. While such approaches deliver promising results, they do not leverage associated patient or scan information collected within Electronic Health Records (EHR). Here, we propose to incorporate EHR data during self-supervised pretraining with a Masked Siamese Network (MSN) to enhance the quality of chest X-ray representations. We investigate three types of EHR data, including demographic, scan metadata, and inpatient stay information. We evaluate our approach on three publicly available chest X-ray datasets, MIMIC-CXR, CheXpert, and NIH-14, using two vision transformer (ViT) backbones, specifically ViT-Tiny and ViT-Small. In assessing the quality of the representations via linear evaluation, our proposed method demonstrates significant improvement compared to vanilla MSN and state-of-the-art self-supervised learning baselines. Our work highlights the potential of EHR-enhanced self-supervised pre-training for medical imaging. The code is publicly available at: //github.com/nyuad-cai/CXR-EHR-MSN
Glaucoma is a leading cause of irreversible blindness worldwide. While deep learning approaches using fundus images have largely improved early diagnosis of glaucoma, variations in images from different devices and locations (known as domain shifts) challenge the use of pre-trained models in real-world settings. To address this, we propose a novel Graph-guided Test-Time Adaptation (GTTA) framework to generalize glaucoma diagnosis models to unseen test environments. GTTA integrates the topological information of fundus images into the model training, enhancing the model's transferability and reducing the risk of learning spurious correlation. During inference, GTTA introduces a novel test-time training objective to make the source-trained classifier progressively adapt to target patterns with reliable class conditional estimation and consistency regularization. Experiments on cross-domain glaucoma diagnosis benchmarks demonstrate the superiority of the overall framework and individual components under different backbone networks.
Supervised learning-based adversarial attack detection methods rely on a large number of labeled data and suffer significant performance degradation when applying the trained model to new domains. In this paper, we propose a self-supervised representation learning framework for the adversarial attack detection task to address this drawback. Firstly, we map the pixels of augmented input images into an embedding space. Then, we employ the prototype-wise contrastive estimation loss to cluster prototypes as latent variables. Additionally, drawing inspiration from the concept of memory banks, we introduce a discrimination bank to distinguish and learn representations for each individual instance that shares the same or a similar prototype, establishing a connection between instances and their associated prototypes. We propose a parallel axial-attention (PAA)-based encoder to facilitate the training process by parallel training over height- and width-axis of attention maps. Experimental results show that, compared to various benchmark self-supervised vision learning models and supervised adversarial attack detection methods, the proposed model achieves state-of-the-art performance on the adversarial attack detection task across a wide range of images.
Retrieval-augmented Large Language Models (LLMs) have reshaped traditional query-answering systems, offering unparalleled user experiences. However, existing retrieval techniques often struggle to handle multi-modal query contexts. In this paper, we present an interactive Multi-modal Query Answering (MQA) system, empowered by our newly developed multi-modal retrieval framework and navigation graph index, integrated with cutting-edge LLMs. It comprises five core components: Data Preprocessing, Vector Representation, Index Construction, Query Execution, and Answer Generation, all orchestrated by a dedicated coordinator to ensure smooth data flow from input to answer generation. One notable aspect of MQA is its utilization of contrastive learning to assess the significance of different modalities, facilitating precise measurement of multi-modal information similarity. Furthermore, the system achieves efficient retrieval through our advanced navigation graph index, refined using computational pruning techniques. Another highlight of our system is its pluggable processing framework, allowing seamless integration of embedding models, graph indexes, and LLMs. This flexibility provides users diverse options for gaining insights from their multi-modal knowledge base. A preliminary video introduction of MQA is available at //youtu.be/xvUuo2ZIqWk.
Building Management System (BMS) through a data-driven method always faces data and model scalability issues. We propose a methodology to tackle the scalability challenges associated with the development of data-driven models for BMS by using Large Language Models (LLMs). LLMs' code generation adaptability can enable broader adoption of BMS by "automating the automation," particularly the data handling and data-driven modeling processes. In this paper, we use LLMs to generate code that processes structured data from BMS and build data-driven models for BMS's specific requirements. This eliminates the need for manual data and model development, reducing the time, effort, and cost associated with this process. Our hypothesis is that LLMs can incorporate domain knowledge about data science and BMS into data processing and modeling, ensuring that the data-driven modeling is automated for specific requirements of different building types and control objectives, which also improves accuracy and scalability. We generate a prompt template following the framework of Machine Learning Operations so that the prompts are designed to systematically generate Python code for data-driven modeling. Our case study indicates that bi-sequential prompting under the prompt template can achieve a high success rate of code generation and code accuracy, and significantly reduce human labor costs.
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.