This letter studies the average mutual information (AMI) of keyhole multiple-input multiple-output (MIMO) systems having finite input signals. At first, the AMI of single-stream transmission is investigated under two cases where the state information at the transmitter (CSIT) is available or not. Then, the derived results are further extended to the case of multi-stream transmission. For the sake of providing more system insights, asymptotic analyses are performed in the regime of high signal-to-noise ratio (SNR), which suggests that the high-SNR AMI converges to some constant with its rate of convergence determined by the diversity order. All the results are validated by numerical simulations and are in excellent agreement.
In applications of remote sensing, estimation, and control, timely communication is not always ensured by high-rate communication. This work proposes distributed age-efficient transmission policies for random access channels with $M$ transmitters. In the first part of this work, we analyze the age performance of stationary randomized policies by relating the problem of finding age to the absorption time of a related Markov chain. In the second part of this work, we propose the notion of \emph{age-gain} of a packet to quantify how much the packet will reduce the instantaneous age of information at the receiver side upon successful delivery. We then utilize this notion to propose a transmission policy in which transmitters act in a distributed manner based on the age-gain of their available packets. In particular, each transmitter sends its latest packet only if its corresponding age-gain is beyond a certain threshold which could be computed adaptively using the collision feedback or found as a fixed value analytically in advance. Both methods improve age of information significantly compared to the state of the art. In the limit of large $M$, we prove that when the arrival rate is small (below $\frac{1}{eM}$), slotted ALOHA-type algorithms are asymptotically optimal. As the arrival rate increases beyond $\frac{1}{eM}$, while age increases under slotted ALOHA, it decreases significantly under the proposed age-based policies. For arrival rates $\theta$, $\theta=\frac{1}{o(M)}$, the proposed algorithms provide a multiplicative factor of at least two compared to the minimum age under slotted ALOHA (minimum over all arrival rates). We conclude that, as opposed to the common practice, it is beneficial to increase the sampling rate (and hence the arrival rate) and transmit packets selectively based on their age-gain.
We consider a communication system where a base station serves $N$ users, one user at a time, over a wireless channel. We consider the timeliness of the communication of each user via the age of information metric. A constrained adversary can block at most a given fraction, $\alpha$, of the time slots over a horizon of $T$ slots, i.e., it can block at most $\alpha T$ slots. We show that an optimum adversary blocks $\alpha T$ consecutive time slots of a randomly selected user. The interesting consecutive property of the blocked time slots is due to the cumulative nature of the age metric.
We establish the capacity of a class of communication channels introduced in [1]. The $n$-letter input from a finite alphabet is passed through a discrete memoryless channel $P_{Z|X}$ and then the output $n$-letter sequence is uniformly permuted. We show that the maximal communication rate (normalized by $\log n$) equals $1/2 (rank(P_{Z|X})-1)$ whenever $P_{Z|X}$ is strictly positive. This is done by establishing a converse bound matching the achievability of [1]. The two main ingredients of our proof are (1) a sharp bound on the entropy of a uniformly sampled vector from a type class and observed through a DMC; and (2) the covering $\epsilon$-net of a probability simplex with Kullback-Leibler divergence as a metric. In addition to strictly positive DMC we also find the noisy permutation capacity for $q$-ary erasure channels, the Z-channel and others.
Millimeter wave systems suffer from high power consumption and are constrained to use low resolution quantizers --digital to analog and analog to digital converters (DACs and ADCs). However, low resolution quantization leads to reduced data rate and increased out-of-band emission noise. In this paper, a multiple-input multiple-output (MIMO) system with linear transceivers using low resolution DACs and ADCs is considered. An information-theoretic analysis of the system to model the effect of quantization on spectrospatial power distribution and capacity of the system is provided. More precisely, it is shown that the impact of quantization can be accurately described via a linear model with additive independent Gaussian noise. This model in turn leads to simple and intuitive expressions for spectrospatial power distribution of the transmitter and a lower bound on the achievable rate of the system. Furthermore, the derived model is validated through simulations and numerical evaluations, where it is shown to accurately predict both spectral and spatial power distributions.
We consider the problem of estimating a continuous-time Gauss-Markov source process observed through a vector Gaussian channel with an adjustable channel gain matrix. For a given (generally time-varying) channel gain matrix, we provide formulas to compute (i) the mean-square estimation error attainable by the classical Kalman-Bucy filter, and (ii) the mutual information between the source process and its Kalman-Bucy estimate. We then formulate a novel "optimal channel gain control problem" where the objective is to control the channel gain matrix strategically to minimize the weighted sum of these two performance metrics. To develop insights into the optimal solution, we first consider the problem of controlling a time-varying channel gain over a finite time interval. A necessary optimality condition is derived based on Pontryagin's minimum principle. For a scalar system, we show that the optimal channel gain is a piece-wise constant signal with at most two switches. We also consider the problem of designing the optimal time-invariant gain to minimize the average cost over an infinite time horizon. A novel semidefinite programming (SDP) heuristic is proposed and the exactness of the solution is discussed.
Distribution estimation under error-prone or non-ideal sampling modelled as "sticky" channels have been studied recently motivated by applications such as DNA computing. Missing mass, the sum of probabilities of missing letters, is an important quantity that plays a crucial role in distribution estimation, particularly in the large alphabet regime. In this work, we consider the problem of estimation of missing mass, which has been well-studied under independent and identically distributed (i.i.d) sampling, in the case when sampling is "sticky". Precisely, we consider the scenario where each sample from an unknown distribution gets repeated a geometrically-distributed number of times. We characterise the minimax rate of Mean Squared Error (MSE) of estimating missing mass from such sticky sampling channels. An upper bound on the minimax rate is obtained by bounding the risk of a modified Good-Turing estimator. We derive a matching lower bound on the minimax rate by extending the Le Cam method.
In this paper we are concerned with Trefftz discretizations of the time-dependent linear wave equation in anisotropic media in arbitrary space dimensional domains $\Omega \subset \mathbb{R}^d~ (d\in \mathbb{N})$. We propose two variants of the Trefftz DG method, define novel plane wave basis functions based on rigorous choices of scaling transformations and coordinate transformations, and prove that the corresponding approximate solutions possess optimal-order error estimates with respect to the meshwidth $h$ and the condition number of the coefficient matrices, respectively. Besides, we propose the global Trefftz DG method combined with local DG methods to solve the time-dependent linear nonhomogeneous wave equation in anisotropic media. In particular, the error analysis holds for the (nonhomogeneous) Dirichlet, Neumann, and mixed boundary conditions from the original PDEs. Furthermore, a strategy to discretize the model in heterogeneous media is proposed. The numerical results verify the validity of the theoretical results, and show that the resulting approximate solutions possess high accuracy.
In this paper, we are interested in the performance of a variable-length stop-feedback (VLSF) code with $m$ optimal decoding times for the binary-input additive white Gaussian noise channel. We first develop tight approximations on the tail probability of length-$n$ cumulative information density. Building on the work of Yavas \emph{et al.}, for a given information density threshold, we formulate the integer program of minimizing the upper bound on average blocklength over all decoding times subject to the average error probability, minimum gap and integer constraints. Eventually, minimization of locally minimum upper bounds over all thresholds will yield the globally minimum upper bound and this is called the two-step minimization. For the integer program, we present a greedy algorithm that yields possibly suboptimal integer decoding times. By allowing a positive real-valued decoding time, we develop the gap-constrained sequential differential optimization (SDO) procedure that sequentially produces the optimal, real-valued decoding times. We identify the error regime in which Polyanskiy's scheme of stopping at zero does not improve the achievability bound. In this error regime, the two-step minimization with the gap-constrained SDO shows that a finite $m$ suffices to attain Polyanskiy's bound for VLSF codes with $m = \infty$.
Given a probability distribution $\mathcal{D}$ over the non-negative integers, a $\mathcal{D}$-repeat channel acts on an input symbol by repeating it a number of times distributed as $\mathcal{D}$. For example, the binary deletion channel ($\mathcal{D}=Bernoulli$) and the Poisson repeat channel ($\mathcal{D}=Poisson$) are special cases. We say a $\mathcal{D}$-repeat channel is square-integrable if $\mathcal{D}$ has finite first and second moments. In this paper, we construct explicit codes for all square-integrable $\mathcal{D}$-repeat channels with rate arbitrarily close to the capacity, that are encodable and decodable in linear and quasi-linear time, respectively. We also consider possible extensions to the repeat channel model, and illustrate how our construction can be extended to an even broader class of channels capturing insertions, deletions, and substitutions. Our work offers an alternative, simplified, and more general construction to the recent work of Rubinstein (arXiv:2111.00261), who attains similar results to ours in the cases of the deletion channel and the Poisson repeat channel. It also slightly improves the runtime and decoding failure probability of the polar codes constructions of Tal et al. (ISIT 2019) and of Pfister and Tal (arXiv:2102.02155) for the deletion channel and certain insertion/deletion/substitution channels. Our techniques follow closely the approaches of Guruswami and Li (IEEEToIT 2019) and Con and Shpilka (IEEEToIT 2020); what sets apart our work is that we show that a capacity-achieving code can be assumed to have an "approximate balance" in the frequency of zeros and ones of all sufficiently long substrings of all codewords. This allows us to attain near-capacity-achieving codes in a general setting. We consider this "approximate balance" result to be of independent interest, as it can be cast in much greater generality than repeat channels.
The capacity of finite state channels (FSCs) with feedback has been shown to be a limit of a sequence of multi-letter expressions. Despite many efforts, a closed-form single-letter capacity characterization is unknown to date. In this paper, the feedback capacity is studied from a fundamental algorithmic point of view by addressing the question of whether or not the capacity can be algorithmically computed. To this aim, the concept of Turing machines is used, which provides fundamental performance limits of digital computers. It is shown that the feedback capacity of FSCs is not Banach-Mazur computable and therefore not Borel-Turing computable. As a consequence, it is shown that either achievability or converse is not Banach-Mazur computable, which means that there are computable FSCs for which it is impossible to find computable tight upper and lower bounds. Furthermore, it is shown that the feedback capacity cannot be characterized as the maximization of a finite-letter formula of entropic quantities.